ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

Overview

ForecastGA

A Python tool to forecast GA data using several popular time series models.

Open In Colab

Logo for ForecastGA

About

Welcome to ForecastGA

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

  • The models are made more intuitive to upgrade and add by having the tool logic separate from the model training and prediction.
  • When calling am.forecast_insample(), any kwargs included (e.g. learning_rate) are passed to the train method of the model.
  • Google Analytics profiles are specified by simply passing the URL (e.g. https://analytics.google.com/analytics/web/?authuser=2#/report-home/aXXXXXwXXXXXpXXXXXX).
  • You can provide a data dict with GA config options or a Pandas Series as the input data.
  • Multiple log levels.
  • Auto GPU detection (via Torch).
  • List all available models, with descriptions, by calling forecastga.print_model_info().
  • Google API info can be passed in the data dict or uploaded as a JSON file named identity.json.
  • Created a companion Google Colab notebook to easily run on GPU.
  • A handy plot function for Colab, forecastga.plot_colab(forecast_in, title="Insample Forecast", dark_mode=True) that formats nicely and also handles Dark Mode!

Models Available

  • ARIMA : Automated ARIMA Modelling
  • Prophet : Modeling Multiple Seasonality With Linear or Non-linear Growth
  • ProphetBC : Prophet Model with Box-Cox transform of the data
  • HWAAS : Exponential Smoothing With Additive Trend and Additive Seasonality
  • HWAMS : Exponential Smoothing with Additive Trend and Multiplicative Seasonality
  • NBEATS : Neural basis expansion analysis (now fixed at 20 Epochs)
  • Gluonts : RNN-based Model (now fixed at 20 Epochs)
  • TATS : Seasonal and Trend no Box Cox
  • TBAT : Trend and Box Cox
  • TBATS1 : Trend, Seasonal (one), and Box Cox
  • TBATP1 : TBATS1 but Seasonal Inference is Hardcoded by Periodicity
  • TBATS2 : TBATS1 With Two Seasonal Periods

How To Use

Find Model Info:

forecastga.print_model_info()

Initialize Model:

Google Analytics:
data = { 'client_id': '',
         'client_secret': '',
         'identity': '',
         'ga_start_date': '2018-01-01',
         'ga_end_date': '2019-12-31',
         'ga_metric': 'sessions',
         'ga_segment': 'organic traffic',
         'ga_url': 'https://analytics.google.com/analytics/web/?authuser=2#/report-home/aXXXXXwXXXXXpXXXXXX',
         'omit_values_over': 2000000
        }

model_list = ["TATS", "TBATS1", "TBATP1", "TBATS2", "ARIMA"]
am = forecastga.AutomatedModel(data , model_list=model_list, forecast_len=30 )
Pandas DataFrame:
# CSV with columns: Date and Sessions
df = pd.read_csv('ga_sessions.csv')
df.Date = pd.to_datetime(df.Date)
df = df.set_index("Date")
data = df.Sessions

model_list = ["TATS", "TBATS1", "TBATP1", "TBATS2", "ARIMA"]
am = forecastga.AutomatedModel(data , model_list=model_list, forecast_len=30 )

Forecast Insample:

forecast_in, performance = am.forecast_insample()

Forecast Outsample:

forecast_out = am.forecast_outsample()

Ensemble Performance:

all_ensemble_in, all_ensemble_out, all_performance = am.ensemble(forecast_in, forecast_out)

Pretty Plot in Google Colab

forecastga.plot_colab(forecast_in, title="Insample Forecast", dark_mode=True)

Installation

Windows users may need to manually install the two items below via conda :

  1. conda install pystan
  2. conda install pytorch -c pytorch
  3. !pip install --upgrade git+https://github.com/jroakes/ForecastGA.git

otherwise, pip install --upgrade forecastga

This repo support GPU training. Below are a few libraries that may have to be manually installed to support.

pip install --upgrade mxnet-cu101
pip install --upgrade torch 1.7.0+cu101

Acknowledgements

  1. Majority of forecasting code taken from https://github.com/firmai/atspy and refactored heavily.
  2. Google Analytics based off of: https://github.com/debrouwere/google-analytics
  3. Thanks to richardfergie for the addition of the Prophet Box-Cox model to control negative predictions.

Contribute

The goal of this repo is to grow the list of available models to test. If you would like to contribute one please read on. Feel free to have fun naming your models.

  1. Fork the repo.
  2. In the /src/forecastga/models folder there is a model called template.py. You can use this as a template for creating your new model. All available variables are there. Forecastga ensures each model has the right data and calls only the train and forecast methods for each model. Feel free to add additional methods that your model requires.
  3. Edit the /src/forecastga/models/__init__.py file to add your model's information. Follow the format of the other entries. Forecastga relies on loc to find the model and class to find the class to use.
  4. Edit requirments.txt with any additional libraries needed to run your model. Keep in mind that this repo should support GPU training if available and some libraries have separate GPU-enabled versions.
  5. Issue a pull request.

If you enjoyed this tool consider buying me some beer at: Paypalme

Owner
JR Oakes
Hacker, SEO, NC State fan, co-organizer of Raleigh and RTP Meetups, as well as @sengineland author. Tweets are my own.
JR Oakes
INF42 - Topological Data Analysis

TDA INF421(Conception et analyse d'algorithmes) Projet : Topological Data Analysis SphereMin Etant donné un nuage des points, ce programme contient de

2 Jan 07, 2022
Jupyter notebooks for the book "The Elements of Statistical Learning".

This repository contains Jupyter notebooks implementing the algorithms found in the book and summary of the textbook.

Madiyar 369 Dec 30, 2022
Flenser is a simple, minimal, automated exploratory data analysis tool.

Flenser Have you ever been handed a dataset you've never seen before? Flenser is a simple, minimal, automated exploratory data analysis tool. It runs

John McCambridge 79 Sep 20, 2022
Convert monolithic Jupyter notebooks into Ploomber pipelines.

Soorgeon Join our community | Newsletter | Contact us | Blog | Website | YouTube Convert monolithic Jupyter notebooks into Ploomber pipelines. soorgeo

Ploomber 65 Dec 16, 2022
Hydrogen (or other pure gas phase species) depressurization calculations

HydDown Hydrogen (or other pure gas phase species) depressurization calculations This code is published under an MIT license. Install as simple as: pi

Anders Andreasen 13 Nov 26, 2022
Senator Trades Monitor

Senator Trades Monitor This monitor will grab the most recent trades by senators and send them as a webhook to discord. Installation To use the monito

Yousaf Cheema 5 Jun 11, 2022
A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful.

How useful is the aswer? A Streamlit web-app for a data-science project that aims to evaluate if the answer to a question is helpful. If you want to l

1 Dec 17, 2021
Full ELT process on GCP environment.

Rent Houses Germany - GCP Pipeline Project: The goal of the project is to extract data about house rentals in Germany, store, process and analyze it u

Felipe Demenech Vasconcelos 2 Jan 20, 2022
PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams

PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams Motivation When dataset freshness is critical, the annotating of high speed

4 Aug 02, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
MotorcycleParts DataAnalysis python

We work with the accounting department of a company that sells motorcycle parts. The company operates three warehouses in a large metropolitan area.

NASEEM A P 1 Jan 12, 2022
Retentioneering 581 Jan 07, 2023
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
A forecasting system dedicated to smart city data

smart-city-predictions System prognostyczny dedykowany dla danych inteligentnych miast Praca inżynierska realizowana przez Michała Stawikowskiego and

Kevin Lai 1 Nov 08, 2021
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Cloudera 759 Jan 07, 2023
The repo for mlbtradetrees.com. Analyze any trade in baseball history!

The repo for mlbtradetrees.com. Analyze any trade in baseball history!

7 Nov 20, 2022
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
TheMachineScraper 🐱‍👤 is an Information Grabber built for Machine Analysis

TheMachineScraper 🐱‍👤 is a tool made purely for analysing machine data for any reason.

doop 5 Dec 01, 2022
Clean and reusable data-sciency notebooks.

KPACUBO KPACUBO is a set Jupyter notebooks focused on the best practices in both software development and data science, namely, code reuse, explicit d

Matvey Morozov 1 Jan 28, 2022