Group Fisher Pruning for Practical Network Compression(ICML2021)

Overview

Group Fisher Pruning for Practical Network Compression (ICML2021)

By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang Wang, Yimin Chen, Wenming Yang, Qingmin Liao, Wayne Zhang

Updates

  • All one stage models of Detection has been released (21/6/2021)

NOTES

All models about detection has been released. The classification models will be released later, because we want to refactor all our code into a Hook , so that it can become a more general tool for all tasks in OpenMMLab.

We will continue to improve this method and apply it to more other tasks, such as segmentation and pose.

The layer grouping algorithm is implemtated based on the AutoGrad of Pytorch, If you are not familiar with this feature and you can read Chinese, then these materials may be helpful to you.

  1. AutoGrad in Pytorch

  2. Hook of MMCV

Introduction

1. Compare with state-of-the-arts.

2. Can be applied to various complicated structures and various tasks.

3. Boosting inference speed on GPU under same flops.

Get Started

1. Creat a basic environment with pytorch 1.3.0 and mmcv-full

Due to the frequent changes of the autograd interface, we only guarantee the code works well in pytorch==1.3.0.

  1. Creat the environment
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
  1. Install PyTorch 1.3.0 and corresponding torchvision.
conda install pytorch=1.3.0 cudatoolkit=10.0 torchvision=0.2.2 -c pytorch
  1. Build the mmcv-full from source with pytorch 1.3.0 and cuda 10.0

Please use gcc-5.4 and nvcc 10.0

 git clone https://github.com/open-mmlab/mmcv.git
 cd mmcv
 MMCV_WITH_OPS=1 pip install -e .

2. Install the corresponding codebase in OpenMMLab.

e.g. MMdetection

pip install mmdet==2.13.0

3. Pruning the model.

e.g. Detection

cd detection

Modify the load_from as the path to the baseline model in of xxxx_pruning.py

# for slurm train
sh tools/slurm_train.sh PATITION_NAME JOB_NAME configs/retina/retina_pruning.py work_dir
# for slurm_test
sh tools/slurm_test.sh PATITION_NAME JOB_NAME configs/retina/retina_pruning.py PATH_CKPT --eval bbox
# for torch.dist
# sh tools/dist_train.sh configs/retina/retina_pruning.py 8

4. Finetune the model.

e.g. Detection

cd detection

Modify the deploy_from as the path to the pruned model in custom_hooks of xxxx_finetune.py

# for slurm train
sh tools/slurm_train.sh PATITION_NAME JOB_NAME configs/retina/retina_finetune.py work_dir
# for slurm test
sh tools/slurm_test.sh PATITION_NAME JOB_NAME configs/retina/retina_fintune.py PATH_CKPT --eval bbox
# for torch.dist
# sh tools/dist_train.sh configs/retina/retina_finetune.py 8

Models

Detection

Method Backbone Baseline(mAP) Finetuned(mAP) Download
RetinaNet R-50-FPN 36.5 36.5 Baseline/Pruned/Finetuned
ATSS* R-50-FPN 38.1 37.9 Baseline/Pruned/Finetuned
PAA* R-50-FPN 39.0 39.4 Baseline/Pruned/Finetuned
FSAF R-50-FPN 37.4 37.4 Baseline/Pruned/Finetuned

* indicate with no Group Normalization in heads.

Classification

Coming soon.

Please cite our paper in your publications if it helps your research.

@InProceedings{liu2021group,
  title = {Group Fisher Pruning for Practical Network Compression},
  author =       {Liu, Liyang and Zhang, Shilong and Kuang, Zhanghui and Zhou, Aojun and Xue, Jing-Hao and Wang, Xinjiang and Chen, Yimin and Yang, Wenming and Liao, Qingmin and Zhang, Wayne},
  booktitle = {Proceedings of the 38th International Conference on Machine Learning},
  year = {2021},
  series = {Proceedings of Machine Learning Research},
  month = {18--24 Jul},
  publisher ={PMLR},
}
Owner
Shilong Zhang
Shilong Zhang
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth, in ICCV 2021 (oral)

RINDNet RINDNet: Edge Detection for Discontinuity in Reflectance, Illumination, Normal and Depth Mengyang Pu, Yaping Huang, Qingji Guan and Haibin Lin

Mengyang Pu 75 Dec 15, 2022
[NeurIPS 2021] "Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks" by Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Cox, Yingyan Lin

Drawing Robust Scratch Tickets: Subnetworks with Inborn Robustness Are Found within Randomly Initialized Networks Yonggan Fu, Qixuan Yu, Yang Zhang, S

12 Dec 11, 2022
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022