A benchmark for the task of translation suggestion

Overview

WeTS: A Benchmark for Translation Suggestion

Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire documents translated by machine translation (MT) has been proven to play a significant role in post editing (PE). WeTS is a benchmark data set for TS, which is annotated by expert translators. WeTS contains corpus(train/dev/test) for four different translation directions, i.e., English2German, German2English, Chinese2English and English2Chinese.


Contents

Data


WeTS is a benchmark dataset for TS, where all the examples are annotated by expert translators. As far as we know, this is the first golden corpus for TS. The statistics about WeTS are listed in the following table:

Translation Direction Train Valid Test
English2German 14,957 1000 1000
German2English 11,777 1000 1000
English2Chinese 15,769 1000 1000
Chinese2English 21,213 1000 1000

For corpus in each direction, the data is organized as:
direction.split.src: the source-side sentences
direction.split.mask: the masked translation sentences, the placeholder is "<MASK>"
direction.split.tgt: the predicted suggestions, the test set for English2Chinese has three references for each example

direction: En2De, De2En, Zh2En, En2Zh
split: train, dev, test

Models


We release the pre-trained NMT models which are used to generate the MT sentences. Additionally, the released NMT models can be used to generate synthetic corpus for TS, which can improve the final performance dramatically.Detailed description about the way of generating synthetic corpus can be found in our paper.

The released models can be downloaded at:

Download the models

and the password is "2iyk"

For inference with the released model, we can:

sh inference_*direction*.sh 

direction can be: en2de, de2en, en2zh, zh2en

Get Started


data preprocessing

sh process.sh 

pre-training

Codes for the first-phase pre-training are not included in this repo, as we directly utilized the codes of XLM (https://github.com/facebookresearch/XLM) with little modiafication. And we did not achieve much gains with the first-phase pretraining.

The second-phase pre-training:

sh preptraining.sh

fine-tuning

sh finetuning.sh

Codes in this repo is mainly forked from fairseq (https://github.com/pytorch/fairseq.git)

Citation


Please cite the following paper if you found the resources in this repository useful.

@article{yang2021wets,
  title={WeTS: A Benchmark for Translation Suggestion},
  author={Yang, Zhen and Zhang, Yingxue and Li, Ernan and Meng, Fandong and Zhou, Jie},
  journal={arXiv preprint arXiv:2110.05151},
  year={2021}
}

LICENCE


See LICENCE

Owner
zhyang
zhyang
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

ALgorithmic_Trading_with_ML An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and

1 Mar 14, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Reinforcement learning algorithms in RLlib

raylab Reinforcement learning algorithms in RLlib and PyTorch. Installation pip install raylab Quickstart Raylab provides agents and environments to b

Ângelo 50 Sep 08, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022