Hg002-qc-snakemake - HG002 QC Snakemake

Overview

HG002 QC Snakemake

To Run

Resources and data specified within snakefile (hg002QC.smk) for simplicity. Tested with snakemake v6.15.3.

Warning: Several steps of this workflow require minimum coverage. It's recommended that this workflow not be run when yield in base pairs is insufficient to produceat least 15X coverage (i.e. yield/3099922541 >= 15x).

# clone repo
git clone --recursive https://github.com/PacificBiosciences/pb-human-wgs-workflow-snakemake.git workflow

# make necessary directories
mkdir cluster_logs

# create conda environment
conda env create --file workflow/environment.yaml

# activate conda environment
conda activate pb-human-wgs-workflow

# submit job
sbatch workflow/run_hg002QC.sh

Plots

A list of important stats from target files that would be good for plotting.

targets = [f"conditions/{condition}/{filename}"
                    for condition in ubam_dict.keys()
                    for filename in ["smrtcell_stats/all_movies.read_length_and_quality.tsv",
                                    "hifiasm/asm.p_ctg.fasta.stats.txt",
                                    "hifiasm/asm.a_ctg.fasta.stats.txt",
                                    "hifiasm/asm.p_ctg.qv.txt",
                                    "hifiasm/asm.a_ctg.qv.txt",
                                    "truvari/summary.txt",
                                    "pbsv/all_chroms.pbsv.vcf.gz",
                                    "deepvariant/deepvariant.vcf.stats.txt",
                                    "whatshap/deepvariant.phased.tsv",
                                    "happy/all.summary.csv",
                                    "happy/all.extended.csv",
                                    "happy/cmrg.summary.csv",
                                    "happy/cmrg.extended.csv",
                                    "mosdepth/coverage.mosdepth.summary.txt",
                                    "mosdepth/mosdepth.M2_ratio.txt",
                                    "mosdepth/gc_coverage.summary.txt",
                                    "mosdepth/coverage.thresholds.summary.txt"]]
  • smrtcell_stats/all_movies.read_length_and_quality.tsv
    • outputs 3 columns (read name, read length, read quality)
    • boxplots of read length and quality
  • hifiasm/asm.p_ctg.fasta.stats.txt (primary) + hifiasm/asm.a_ctg.fasta.stats.txt (alternate)
    • all stats below should be collected for both primary (p_ctg) and alternate (p_atg) assemblies
    • assembly size awk '$1=="SZ" {print $2}' <filename>
    • auN (area under the curve) awk '$1=="AU" {print $2}' <filename>
    • NGx - line plot of NG10 through NG90 awk '$1=="NL" {print $2 $3}' <filename> ($2 is x-axis, $3 y-axis) like this: example plot
  • hifiasm/asm.p_ctg.qv.txt + hifiasm/asm.a_ctg.qv.txt
    • adjusted assembly quality awk '$1=="QV" {print $3}' <filename> for primary and alternate assemblies
  • truvari/truvari.summary.txt
    • structural variant recall jq .recall <filename>
    • structural variant precision jq .precision <filename>
    • structural variant f1 jq .f1 <filename>
    • number of calls jq '."call cnt"' <filename>
    • FP jq .FP <filename>
    • TP-call jq .TP-call <filename>
    • FN jq .FN <filename>
    • TP-base jq .TP-base <filename>
  • pbsv/all_chroms.pbsv.vcf.gz
    • counts of each type of variant bcftools query -i 'FILTER=="PASS"' -f '%INFO/SVTYPE\n' <filename> | awk '{A[$1]++}END{for(i in A)print i,A[i]}'
    • can also do size distributions of indels bcftools query -i 'FILTER=="PASS" && (INFO/SVTYPE=="INS" | INFO/SVTYPE=="DEL")' -f '%INFO/SVTYPE\t%INFO/SVLEN\n' <filename>
  • deepvariant/deepvariant.vcf.stats.txt
    • several values in lines starting with 'SN' awk '$1=="SN"' <filename>
      • number of SNPS
      • number INDELs
      • number of multi-allelic sites
      • number of multi-allelic SNP sites
    • ratio of transitions to transversions awk '$1=="TSTV" {print$5}' <filename>
    • can monitor substitution types awk '$1=="ST"' <filename>
    • SNP heterozygous : non-ref homozygous ratio awk '$1=="PSC" {print $6/$5}' <filename>
    • SNP transitions : transversions awk '$1=="PSC" {print $7/$8}' <filename>
    • Number of heterozygous insertions : number of homozgyous alt insertions awk '$1=="PSI" {print $8/$10}' <filename>
    • Number of heterozygous deletions : number of homozgyous alt deletions awk '$1=="PSI" {print $9/$11}' <filename>
    • Total INDEL heterozygous:homozygous ratio awk '$1=="PSI" {print ($8+$9)/($10+$11)}' <filename>8+9:10+11 indel het:hom)
  • whatshap/deepvariant.phased.tsv
    • phase block N50 awk '$2=="ALL" {print $22}' <filename>
    • bp_per_block_sum (total number of phased bases) awk '$2=="ALL" {print $18}' <filename>
  • whatshap/deepvariant.phased.blocklist
    • calculate phase block size (to - from) and reverse order them (awk 'NR>1 {print $5-$4}' <filename> |sort -nr), then plot as cumulative line graph like for assembly, N_0 to N90 example plot
  • happy/all.summary.csv + happy/cmrg.summary.csv
    • stats should be collected for all variants and cmrg challenging medically relevant genes
      • SNP recall awk -F, '$1=="SNP" && $2=="PASS" {print $10}' <filename>
      • SNP precision awk -F, '$1=="SNP" && $2=="PASS" {print $11}' <filename>
      • SNP F1 awk -F, '$1=="SNP" && $2=="PASS" {print $13}' <filename>
      • INDEL recall awk -F, '$1=="INDEL" && $2=="PASS" {print $10}' <filename>
      • INDEL precision awk -F, '$1=="INDEL" && $2=="PASS" {print $11}' <filename>
      • INDEL F1 awk -F, '$1=="INDEL" && $2=="PASS" {print $13}' <filename>
  • happy/all.extended.csv + happy/cmrg.extended.csv
    • there are many stratifications that can be examined, and Aaron Wenger might have opinionso n which are most important. The below commands are just for one stratification "GRCh38_lowmappabilityall.bed.gz".
    • SNP GRCh38_lowmappabilityall recall awk -F, '$1=="SNP" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $8}' <filename>
    • SNP GRCh38_lowmappabilityall precision awk -F, '$1=="SNP" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $9}' <filename>
    • SNP GRCh38_lowmappabilityall F1 awk -F, '$1=="SNP" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $11}' <filename>
    • INDEL GRCh38_lowmappabilityall recall awk -F, '$1=="INDEL" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $8}' <filename>
    • INDEL GRCh38_lowmappabilityall precision awk -F, '$1=="INDEL" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $9}' <filename>
    • INDEL GRCh38_lowmappabilityall F1 awk -F, '$1=="INDEL" && $2=="*" && $3=="GRCh38_lowmappabilityall.bed.gz" && $4=="PASS" {print $11}' <filename>
  • mosdepth/coverage.mosdepth.summary.txt
    • mean aligned coverage in "coverage.mosdepth.summary.txt" - 4th column of final row, can grep 'total_region'
  • mosdepth/mosdepth.M2_ratio.txt
    • outputs single value: ratio of chr2 coverage to chrM coverage
    • bar chart of m2 ratio
  • mosdepth/gc_coverage.summary.txt
    • outputs 5 columns: gc percentage bin, q1 , median , q3 , count
    • q1, median, q3 columns are statistics for coverage at different gc percentages (e.g. median cover at 30% GC)
    • "count" refers to # of 500 bp windows that fall in that bin
    • can pick a couple of key GC coverage bins and make box plots out of them
  • mosdepth/coverage.thresholds.summary.txt
    • outputs 10 columns corresponding to % of genome sequenced to minimum coverage depths (1X - 10X)
    • maybe a line chart comparing the different coverage thresholds among conditions
Owner
Juniper A. Lake
Bioinformatics Scientist
Juniper A. Lake
Clean and reusable data-sciency notebooks.

KPACUBO KPACUBO is a set Jupyter notebooks focused on the best practices in both software development and data science, namely, code reuse, explicit d

Matvey Morozov 1 Jan 28, 2022
Cleaning and analysing aggregated UK political polling data.

Analysing aggregated UK polling data The tweet collection & storage pipeline used in email-service is used to also collect tweets from @britainelects.

Ajay Pethani 0 Dec 22, 2021
Analysiscsv.py for extracting analysis and exporting as CSV

wcc_analysis Lichess page documentation: https://lichess.org/page/world-championships Each WCC has a study, studies are fetched using: https://lichess

32 Apr 25, 2022
Monitor the stability of a pandas or spark dataframe ⚙︎

Population Shift Monitoring popmon is a package that allows one to check the stability of a dataset. popmon works with both pandas and spark datasets.

ING Bank 403 Dec 07, 2022
Meltano: ELT for the DataOps era. Meltano is open source, self-hosted, CLI-first, debuggable, and extensible.

Meltano is open source, self-hosted, CLI-first, debuggable, and extensible. Pipelines are code, ready to be version c

Meltano 625 Jan 02, 2023
SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

SNV Pipeline SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

East Genomics 1 Nov 02, 2021
Feature Detection Based Template Matching

Feature Detection Based Template Matching The classification of the photos was made using the OpenCv template Matching method. Installation Use the pa

Muhammet Erem 2 Nov 18, 2021
PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams

PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams Motivation When dataset freshness is critical, the annotating of high speed

4 Aug 02, 2022
Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks

The following Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks (MOFs). The training set is extracted from the Cambridge S

1 Jan 09, 2022
Approximate Nearest Neighbor Search for Sparse Data in Python!

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Meta Research 906 Jan 01, 2023
InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

CRISPRanalysis InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family. In this work, we present a workflow

2 Jan 31, 2022
MDAnalysis is a Python library to analyze molecular dynamics simulations.

MDAnalysis Repository README [*] MDAnalysis is a Python library for the analysis of computer simulations of many-body systems at the molecular scale,

MDAnalysis 933 Dec 28, 2022
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

gg I wasn't satisfied with any of the other available Gemini clients, so I wrote my own. Requires Python 3.9 (maybe older, I haven't checked) and opti

RAFAEL RODRIGUES 5 Jan 03, 2023
A crude Hy handle on Pandas library

Quickstart Hyenas is a curde Hy handle written on top of Pandas API to allow for more elegant access to data-scientist's powerhouse that is Pandas. In

Peter Výboch 4 Sep 05, 2022
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an

PyMC 7.2k Dec 30, 2022
Evaluation of a Monocular Eye Tracking Set-Up

Evaluation of a Monocular Eye Tracking Set-Up As part of my master thesis, I implemented a new state-of-the-art model that is based on the work of Che

Pascal 19 Dec 17, 2022
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022
Incubator for useful bioinformatics code, primarily in Python and R

Collection of useful code related to biological analysis. Much of this is discussed with examples at Blue collar bioinformatics. All code, images and

Brad Chapman 560 Jan 03, 2023
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Trung-Duy Nguyen 27 Nov 01, 2022
Find exposed data in Azure with this public blob scanner

BlobHunter A tool for scanning Azure blob storage accounts for publicly opened blobs. BlobHunter is a part of "Hunting Azure Blobs Exposes Millions of

CyberArk 250 Jan 03, 2023