Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Overview

Multi-Task Meta-Learning Modification with Stochastic Approximation

This repository contains the code for the paper
"Multi-Task Meta-Learning Modification with Stochastic Approximation".

Method pipeline

Dependencies

This code has been tested on Ubuntu 16.04 with Python 3.8 and PyTorch 1.8.

To install the required dependencies:

pip install -r requirements.txt

Usage

To reproduce the results on benchmarks described in our article, use the following scripts. To vary types of the experiments, change the parameters of the scripts responsible for benchmark dataset, shot and way (e.g. miniImageNet 1-shot 5-way or CIFAR-FS 5-shot 2-way).

MAML

Multi-task modification (MTM) for Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017).

Multi-task modifications for MAML are trained on top of baseline MAML model which has to be trained beforehand.

To train MAML (reproduced) on miniImageNet 1-shot 2-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name reproduced-miniimagenet \
    --dataset miniimagenet \
    --num-ways 2 \
    --num-shots 1 \
    --num-steps 5 \
    --num-epochs 300 \
    --use-cuda \
    --output-folder ./results

To train MAML MTM SPSA-Track on miniImageNet 1-shot 2-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name mini-imagenet-mtm-spsa-track \
    --load "./results/reproduced-miniimagenet/model.th" \
    --dataset miniimagenet \
    --num-ways 2 \
    --num-shots 1 \
    --num-steps 5 \
    --task-weighting spsa-track \
    --normalize-spsa-weights-after 100 \
    --num-epochs 40 \
    --use-cuda \
    --output-folder ./results

To train MAML (reproduced) on tieredImageNet 1-shot 2-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name reproduced-tieredimagenet \
    --dataset tieredimagenet \
    --num-ways 2 \
    --num-shots 1 \
    --num-steps 5 \
    --num-epochs 300 \
    --use-cuda \
    --output-folder ./results

To train MAML MTM SPSA on tieredImageNet 1-shot 2-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name tiered-imagenet-mtm-spsa \
    --load "./results/reproduced-tieredimagenet/model.th" \
    --dataset tieredimagenet \
    --num-ways 2 \
    --num-shots 1 \
    --num-steps 5 \
    --task-weighting spsa-delta \
    --normalize-spsa-weights-after 100 \
    --num-epochs 40 \
    --use-cuda \
    --output-folder ./results

To train MAML (reproduced) on FC100 5-shot 5-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name reproduced-fc100 \
    --dataset fc100 \
    --num-ways 5 \
    --num-shots 5 \
    --num-steps 5 \
    --num-epochs 300 \
    --use-cuda \
    --output-folder ./results

To train MAML MTM SPSA-Coarse on FC100 5-shot 5-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name fc100-mtm-spsa-coarse \
    --load "./results/reproduced-fc100/model.th" \
    --dataset fc100 \
    --num-ways 5 \
    --num-shots 5 \
    --num-steps 5 \
    --task-weighting spsa-per-coarse-class \
    --num-epochs 40 \
    --use-cuda \
    --output-folder ./results

To train MAML (reproduced) on CIFAR-FS 1-shot 5-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name reproduced-cifar \
    --dataset cifarfs \
    --num-ways 5 \
    --num-shots 1 \
    --num-steps 5 \
    --num-epochs 600 \
    --use-cuda \
    --output-folder ./results

To train MAML MTM Inner First-Order on CIFAR-FS 1-shot 5-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name cifar-mtm-inner-first-order \
    --load "./results/reproduced-cifar/model.th" \
    --dataset cifarfs \
    --num-ways 5 \
    --num-shots 1 \
    --num-steps 5 \
    --task-weighting gradient-novel-loss \
    --use-inner-optimizer \
    --num-epochs 40 \
    --use-cuda \
    --output-folder ./results

To train MAML MTM Backprop on CIFAR-FS 1-shot 5-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name cifar-mtm-backprop \
    --load "./results/reproduced-cifar-5shot-5way/model.th" \
    --dataset cifarfs \
    --num-ways 5 \
    --num-shots 1 \
    --num-steps 5 \
    --task-weighting gradient-novel-loss \
    --num-epochs 40 \
    --use-cuda \
    --output-folder ./results

To test any of the above-described benchmarks, run:

python maml/test.py ./results/path-to-config/config.json --num-steps 10 --use-cuda

For instance, to test MAML MTM SPSA-Track on miniImageNet 1-shot 2-way benchmark, run:

python maml/test.py ./results/mini-imagenet-mtm-spsa-track/config.json --num-steps 10 --use-cuda

Prototypical Networks

Multi-task modification (MTM) for Prototypical Networks (ProtoNet) (Snell et al., 2017).

To train ProtoNet MTM SPSA-Track with ResNet-12 backbone on miniImageNet 1-shot 5-way benchmark, run:

python protonet/train.py \
    --dataset miniImageNet \
    --network ResNet12 \
    --tracking \
    --train-shot 1 \
    --train-way 5 \
    --val-shot 1 \
    --val-way 5

To test ProtoNet MTM SPSA-Track with ResNet-12 backbone on miniImageNet 1-shot 5-way benchmark, run:

python protonet/test.py --dataset miniImageNet --network ResNet12 --shot 1 --way 5

To train ProtoNet MTM Backprop with 64-64-64-64 backbone on CIFAR-FS 1-shot 2-way benchmark, run:

python protonet/train.py \
    --dataset CIFAR_FS \
    --train-weights \
    --train-weights-layer \
    --train-shot 1 \
    --train-way 2 \
    --val-shot 1 \
    --val-way 2

To test ProtoNet MTM Backprop with 64-64-64-64 backbone on CIFAR-FS 1-shot 5-way benchmark, run:

python protonet/test.py --dataset CIFAR_FS --shot 1 --way 2

To train ProtoNet MTM Inner First-Order with 64-64-64-64 backbone on FC100 10-shot 5-way benchmark, run:

python protonet/train.py \
    --dataset FC100 \
    --train-weights \
    --train-weights-opt \
    --train-shot 10 \
    --train-way 5 \
    --val-shot 10 \
    --val-way 5

To test ProtoNet MTM Inner First-Order with 64-64-64-64 backbone on FC100 10-shot 5-way benchmark, run:

python protonet/test.py --dataset FC100 --shot 10 --way 5

To train ProtoNet MTM SPSA with 64-64-64-64 backbone on tieredImageNet 5-shot 2-way benchmark, run:

python protonet/train.py \
    --dataset tieredImageNet \
    --train-shot 5 \
    --train-way 2 \
    --val-shot 5 \
    --val-way 2

To test ProtoNet MTM SPSA with 64-64-64-64 backbone on tieredImageNet 5-shot 2-way benchmark, run:

python protonet/test.py --dataset tieredImageNet --shot 5 --way 2

Acknowledgments

Our code uses some dataloaders from Torchmeta.

Code in maml folder is based on the extended implementation from Torchmeta and pytorch-maml. The code has been updated so that baseline scores more closely follow those of the original MAML paper.

Code in protonet folder is based on the implementation from MetaOptNet. All .py files in this folder except for dataloaders.py and optimize.py were adopted from this implementation and modified afterwards. A copy of Apache License, Version 2.0 is available in protonet folder.

Owner
Andrew
Andrew
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Tutorial repo for an end-to-end Data Science project

End-to-end Data Science project This is the repo with the notebooks, code, and additional material used in the ITI's workshop. The goal of the session

Deena Gergis 127 Dec 30, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Reverse engineering Rosetta 2 in M1 Mac

Project Champollion About this project Rosetta 2 is an emulation mechanism to run the x86_64 applications on Arm-based Apple Silicon with Ahead-Of-Tim

FFRI Security, Inc. 258 Jan 07, 2023
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023