Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Overview

Residual Dense Network for Image Super-Resolution

This repository is for RDN introduced in the following paper

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu, "Residual Dense Network for Image Super-Resolution", CVPR 2018 (spotlight), [arXiv] [[email protected]], [[email protected]]

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu, "Residual Dense Network for Image Restoration", arXiv 2018, [arXiv]

The code is built on EDSR (Torch) and tested on Ubuntu 14.04 environment (Torch7, CUDA8.0, cuDNN5.1) with Titan X/1080Ti/Xp GPUs.

Other implementations: PyTorch_version has been implemented by Nguyễn Trần Toàn ([email protected]) and merged into EDSR_PyTorch. TensorFlow_version by hengchuan.

Contents

  1. Introduction
  2. Train
  3. Test
  4. Results
  5. Citation
  6. Acknowledgements

Introduction

A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.

RDB Figure 1. Residual dense block (RDB) architecture. RDN Figure 2. The architecture of our proposed residual dense network (RDN).

Train

Prepare training data

  1. Download DIV2K training data (800 training + 100 validtion images) from DIV2K dataset or SNU_CVLab.

  2. Place all the HR images in 'Prepare_TrainData/DIV2K/DIV2K_HR'.

  3. Run 'Prepare_TrainData_HR_LR_BI/BD/DN.m' in matlab to generate LR images for BI, BD, and DN models respectively.

  4. Run 'th png_to_t7.lua' to convert each .png image to .t7 file in new folder 'DIV2K_decoded'.

  5. Specify the path of 'DIV2K_decoded' to '-datadir' in 'RDN_TrainCode/code/opts.lua'.

For more informaiton, please refer to EDSR(Torch).

Begin to train

  1. (optional) Download models for our paper and place them in '/RDN_TrainCode/experiment/model'.

    All the models can be downloaded from Dropbox or Baidu.

  2. Cd to 'RDN_TrainCode/code', run the following scripts to train models.

    You can use scripts in file 'TrainRDN_scripts' to train models for our paper.

    # BI, scale 2, 3, 4
    # BIX2F64D18C6G64P48, input=48x48, output=96x96
    th main.lua -scale 2 -netType RDN -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 96 -dataset div2k -datatype t7  -DownKernel BI -splitBatch 4 -trainOnly true
    
    # BIX3F64D18C6G64P32, input=32x32, output=96x96, fine-tune on RDN_BIX2.t7
    th main.lua -scale 3 -netType resnet_cu -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 96 -dataset div2k -datatype t7  -DownKernel BI -splitBatch 4 -trainOnly true  -preTrained ../experiment/model/RDN_BIX2.t7
    
    # BIX4F64D18C6G64P32, input=32x32, output=128x128, fine-tune on RDN_BIX2.t7
    th main.lua -scale 4 -nGPU 1 -netType resnet_cu -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 128 -dataset div2k -datatype t7  -DownKernel BI -splitBatch 4 -trainOnly true -nEpochs 1000 -preTrained ../experiment/model/RDN_BIX2.t7 
    
    # BD, scale 3
    # BDX3F64D18C6G64P32, input=32x32, output=96x96, fine-tune on RDN_BIX3.t7
    th main.lua -scale 3 -nGPU 1 -netType resnet_cu -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 96 -dataset div2k -datatype t7  -DownKernel BD -splitBatch 4 -trainOnly true -nEpochs 200 -preTrained ../experiment/model/RDN_BIX3.t7
    
    # DN, scale 3
    # DNX3F64D18C6G64P32, input=32x32, output=96x96, fine-tune on RDN_BIX3.t7
    th main.lua -scale 3 -nGPU 1 -netType resnet_cu -nFeat 64 -nFeaSDB 64 -nDenseBlock 16 -nDenseConv 8 -growthRate 64 -patchSize 96 -dataset div2k -datatype t7  -DownKernel DN -splitBatch 4 -trainOnly true  -nEpochs 200 -preTrained ../experiment/model/RDN_BIX3.t7

    Only RDN_BIX2.t7 was trained using 48x48 input patches. All other models were trained using 32x32 input patches in order to save training time. However, smaller input patch size in training would lower the performance to some degree. We also set '-trainOnly true' to save GPU memory.

Test

Quick start

  1. Download models for our paper and place them in '/RDN_TestCode/model'.

    All the models can be downloaded from Dropbox or Baidu.

  2. Run 'TestRDN.lua'

    You can use scripts in file 'TestRDN_scripts' to produce results for our paper.

    # No self-ensemble: RDN
    # BI degradation model, X2, X3, X4
    th TestRDN.lua -model RDN_BIX2 -degradation BI -scale 2 -selfEnsemble false -dataset Set5
    th TestRDN.lua -model RDN_BIX3 -degradation BI -scale 3 -selfEnsemble false -dataset Set5
    th TestRDN.lua -model RDN_BIX4 -degradation BI -scale 4 -selfEnsemble false -dataset Set5
    # BD degradation model, X3
    th TestRDN.lua -model RDN_BDX3 -degradation BD -scale 3 -selfEnsemble false -dataset Set5
    # DN degradation model, X3
    th TestRDN.lua -model RDN_DNX3 -degradation DN -scale 3 -selfEnsemble false -dataset Set5
    
    
    # With self-ensemble: RDN+
    # BI degradation model, X2, X3, X4
    th TestRDN.lua -model RDN_BIX2 -degradation BI -scale 2 -selfEnsemble true -dataset Set5
    th TestRDN.lua -model RDN_BIX3 -degradation BI -scale 3 -selfEnsemble true -dataset Set5
    th TestRDN.lua -model RDN_BIX4 -degradation BI -scale 4 -selfEnsemble true -dataset Set5
    # BD degradation model, X3
    th TestRDN.lua -model RDN_BDX3 -degradation BD -scale 3 -selfEnsemble true -dataset Set5
    # DN degradation model, X3
    th TestRDN.lua -model RDN_DNX3 -degradation DN -scale 3 -selfEnsemble true -dataset Set5

The whole test pipeline

  1. Prepare test data.

    Place the original test sets (e.g., Set5, other test sets are available from GoogleDrive or Baidu) in 'OriginalTestData'.

    Run 'Prepare_TestData_HR_LR.m' in Matlab to generate HR/LR images with different degradation models.

  2. Conduct image SR.

    See Quick start

  3. Evaluate the results.

    Run 'Evaluate_PSNR_SSIM.m' to obtain PSNR/SSIM values for paper.

Results

PSNR_SSIM_BI Table 1. Benchmark results with BI degradation model. Average PSNR/SSIM values for scaling factor ×2, ×3, and ×4.

PSNR_SSIM_BD_DN Table 2. Benchmark results with BD and DN degradation models. Average PSNR/SSIM values for scaling factor ×3.

Citation

If you find the code helpful in your resarch or work, please cite the following papers.

@InProceedings{Lim_2017_CVPR_Workshops,
  author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu},
  title = {Enhanced Deep Residual Networks for Single Image Super-Resolution},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  month = {July},
  year = {2017}
}

@inproceedings{zhang2018residual,
    title={Residual Dense Network for Image Super-Resolution},
    author={Zhang, Yulun and Tian, Yapeng and Kong, Yu and Zhong, Bineng and Fu, Yun},
    booktitle={CVPR},
    year={2018}
}

@article{zhang2020rdnir,
    title={Residual Dense Network for Image Restoration},
    author={Zhang, Yulun and Tian, Yapeng and Kong, Yu and Zhong, Bineng and Fu, Yun},
    journal={TPAMI},
    year={2020}
}

Acknowledgements

This code is built on EDSR (Torch). We thank the authors for sharing their codes of EDSR Torch version and PyTorch version.

Owner
Yulun Zhang
Yulun Zhang
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
The 2nd Version Of Slothybot

SlothyBot Go to this website: "https://bitly.com/SlothyBot" The 2nd Version Of Slothybot. The Bot Has Many Features, Such As: Moderation Commands; Kic

Slothy 0 Jun 01, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Athena is the only tool that you will ever need to optimize your portfolio.

Athena Portfolio optimization is the process of selecting the best portfolio (asset distribution), out of the set of all portfolios being considered,

Indrajit 1 Mar 25, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
Source code for ZePHyR: Zero-shot Pose Hypothesis Rating @ ICRA 2021

ZePHyR: Zero-shot Pose Hypothesis Rating ZePHyR is a zero-shot 6D object pose estimation pipeline. The core is a learned scoring function that compare

R-Pad - Robots Perceiving and Doing 18 Aug 22, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022