[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

Overview

ShapeInversion

Paper

Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D Shape Completion through GAN Inversion" CVPR 2021

Results

Setup

Environment

conda create -n shapeinversion python=3.7
conda activate shapeinversion
pip install torch==1.2.0 torchvision==0.4.0
pip install plyfile h5py Ninja matplotlib scipy

Datasets

Our work is extensively evaluated with several existing datasets. For the virtual scan benchmark (derived from ShapeNet), we use CRN's dataset. We would suggest you to get started with this dataset. For ball-holed partial shapes, we refer to PF-Net. For PartNet dataset, we download from MPC. For real scans processed from KITTI, MatterPort3D, and ScanNet, we get from pcl2pcl.

Get started

We provide pretrained tree-GAN models for you to directly start with the inversion stage. You can download them from Google drive or Baidu cloud (password: w1n9), and put them to the pretrained_models folder.

Shape completion

You can specify other class and other datasets, like real scans provided by pcl2pcl.

python trainer.py \
--dataset CRN \
--class_choice chair \
--inversion_mode completion \
--mask_type k_mask \
--save_inversion_path ./saved_results/CRN_chair \
--ckpt_load pretrained_models/chair.pt \
--dataset_path <your_dataset_directory>

Evaluating completion results

For datasets with GT, such as the above CRN_chair:

python eval_completion.py \
--eval_with_GT true \
--saved_results_path saved_results/CRN_chair

For datasets without GT:

python eval_completion.py \
--eval_with_GT false \
--saved_results_path <your_results_on_KITTI>

Giving multiple valid outputs

ShapeInversion is able to provide multiple valid complete shapes, especially when extreme incompleteness that causes ambiguity.

python trainer.py \
--dataset CRN \
--class_choice chair \
--inversion_mode diversity \
--save_inversion_path ./saved_results/CRN_chair_diversity \
--ckpt_load pretrained_models/chair.pt \
--dataset_path <your_dataset_directory>

Shape jittering

ShapeInversion is able to change an object into other plausible shapes of different geometries.

python trainer.py \
--dataset CRN \
--class_choice plane \
--save_inversion_path ./saved_results/CRN_plane_jittering  \
--ckpt_load pretrained_models/plane.pt \
--inversion_mode jittering \
--iterations 30 30 30 30 \
--dataset_path <your_dataset_directory>

Shape morphing

ShapeInversion enables morphing between two shapes.

python trainer.py \
--dataset CRN \
--class_choice chair \
--save_inversion_path ./saved_results/CRN_chair_morphing  \
--ckpt_load pretrained_models/chair.pt \
--inversion_mode morphing \
--dataset_path <your_dataset_directory>

Pretraining

You can also pretrain tree-GAN by yourself.

python pretrain_treegan.py \
--split train \
--class_choice chair \
--FPD_path ./evaluation/pre_statistics_chair.npz \
--ckpt_path ./pretrain_checkpoints/chair \
--knn_loss True \
--dataset_path <your_dataset_directory>

NOTE:

  • The inversion stage supports distributed training by simply adding --dist. It is tested on slurm as well.
  • The hyperparameters provided may not be optimal, feel free to tune them.
  • Smaller batch size for pretraining is totally fine.

Acknowledgement

The code is in part built on tree-GAN and DGP. Besides, CD and EMD are borrowed from ChamferDistancePytorch and MSN respectively, both of which are included in the external folder for convenience.

Citation

@inproceedings{zhang2021unsupervised,
    title = {Unsupervised 3D Shape Completion through GAN Inversion},
    author = {Zhang, Junzhe and Chen, Xinyi and Cai, Zhongang and Pan, Liang and Zhao, Haiyu 
    and Yi, Shuai and Yeo, Chai Kiat and Dai, Bo and Loy, Chen Change},
    booktitle = {CVPR},
    year = {2021}}
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Text completion with Hugging Face and TensorFlow.js running on Node.js

Katana ML Text Completion 🤗 Description Runs with with Hugging Face DistilBERT and TensorFlow.js on Node.js distilbert-model - converter from Hugging

Katana ML 2 Nov 04, 2022
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022