[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

Overview

ShapeInversion

Paper

Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D Shape Completion through GAN Inversion" CVPR 2021

Results

Setup

Environment

conda create -n shapeinversion python=3.7
conda activate shapeinversion
pip install torch==1.2.0 torchvision==0.4.0
pip install plyfile h5py Ninja matplotlib scipy

Datasets

Our work is extensively evaluated with several existing datasets. For the virtual scan benchmark (derived from ShapeNet), we use CRN's dataset. We would suggest you to get started with this dataset. For ball-holed partial shapes, we refer to PF-Net. For PartNet dataset, we download from MPC. For real scans processed from KITTI, MatterPort3D, and ScanNet, we get from pcl2pcl.

Get started

We provide pretrained tree-GAN models for you to directly start with the inversion stage. You can download them from Google drive or Baidu cloud (password: w1n9), and put them to the pretrained_models folder.

Shape completion

You can specify other class and other datasets, like real scans provided by pcl2pcl.

python trainer.py \
--dataset CRN \
--class_choice chair \
--inversion_mode completion \
--mask_type k_mask \
--save_inversion_path ./saved_results/CRN_chair \
--ckpt_load pretrained_models/chair.pt \
--dataset_path <your_dataset_directory>

Evaluating completion results

For datasets with GT, such as the above CRN_chair:

python eval_completion.py \
--eval_with_GT true \
--saved_results_path saved_results/CRN_chair

For datasets without GT:

python eval_completion.py \
--eval_with_GT false \
--saved_results_path <your_results_on_KITTI>

Giving multiple valid outputs

ShapeInversion is able to provide multiple valid complete shapes, especially when extreme incompleteness that causes ambiguity.

python trainer.py \
--dataset CRN \
--class_choice chair \
--inversion_mode diversity \
--save_inversion_path ./saved_results/CRN_chair_diversity \
--ckpt_load pretrained_models/chair.pt \
--dataset_path <your_dataset_directory>

Shape jittering

ShapeInversion is able to change an object into other plausible shapes of different geometries.

python trainer.py \
--dataset CRN \
--class_choice plane \
--save_inversion_path ./saved_results/CRN_plane_jittering  \
--ckpt_load pretrained_models/plane.pt \
--inversion_mode jittering \
--iterations 30 30 30 30 \
--dataset_path <your_dataset_directory>

Shape morphing

ShapeInversion enables morphing between two shapes.

python trainer.py \
--dataset CRN \
--class_choice chair \
--save_inversion_path ./saved_results/CRN_chair_morphing  \
--ckpt_load pretrained_models/chair.pt \
--inversion_mode morphing \
--dataset_path <your_dataset_directory>

Pretraining

You can also pretrain tree-GAN by yourself.

python pretrain_treegan.py \
--split train \
--class_choice chair \
--FPD_path ./evaluation/pre_statistics_chair.npz \
--ckpt_path ./pretrain_checkpoints/chair \
--knn_loss True \
--dataset_path <your_dataset_directory>

NOTE:

  • The inversion stage supports distributed training by simply adding --dist. It is tested on slurm as well.
  • The hyperparameters provided may not be optimal, feel free to tune them.
  • Smaller batch size for pretraining is totally fine.

Acknowledgement

The code is in part built on tree-GAN and DGP. Besides, CD and EMD are borrowed from ChamferDistancePytorch and MSN respectively, both of which are included in the external folder for convenience.

Citation

@inproceedings{zhang2021unsupervised,
    title = {Unsupervised 3D Shape Completion through GAN Inversion},
    author = {Zhang, Junzhe and Chen, Xinyi and Cai, Zhongang and Pan, Liang and Zhao, Haiyu 
    and Yi, Shuai and Yeo, Chai Kiat and Dai, Bo and Loy, Chen Change},
    booktitle = {CVPR},
    year = {2021}}
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
Code accompanying our NeurIPS 2021 traffic4cast challenge

Traffic forecasting on traffic movie snippets This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the c

Nina Wiedemann 2 Aug 09, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022