TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Overview

Hierarchical Attention Networks for Document Classification

This is an implementation of the paper Hierarchical Attention Networks for Document Classification, NAACL 2016.

alt tag

Requirements

Data

We use the data provided by Tang et al. 2015, including 4 datasets:

  • IMDB
  • Yelp 2013
  • Yelp 2014
  • Yelp 2015

Note: The original data seems to have an issue with unzipping. I re-uploaded the data to GG Drive for better downloading speed. Please request for access permission.

Usage

First, download the datasets and unzip into data folder.
Then, run script to prepare the data (default is using Yelp-2015 dataset):

python data_prepare.py

Train and evaluate the model:
(make sure Glove embeddings are ready before training)

wget http://nlp.stanford.edu/data/glove.6B.zip
unzip glove.6B.zip
python train.py

Print training arguments:

python train.py --help
optional arguments:
  -h, --help            show this help message and exit
  --cell_dim            CELL_DIM
                        Hidden dimensions of GRU cells (default: 50)
  --att_dim             ATTENTION_DIM
                        Dimensionality of attention spaces (default: 100)
  --emb_dim             EMBEDDING_DIM
                        Dimensionality of word embedding (default: 200)
  --learning_rate       LEARNING_RATE
                        Learning rate (default: 0.0005)
  --max_grad_norm       MAX_GRAD_NORM
                        Maximum value of the global norm of the gradients for clipping (default: 5.0)
  --dropout_rate        DROPOUT_RATE
                        Probability of dropping neurons (default: 0.5)
  --num_classes         NUM_CLASSES
                        Number of classes (default: 5)
  --num_checkpoints     NUM_CHECKPOINTS
                        Number of checkpoints to store (default: 1)
  --num_epochs          NUM_EPOCHS
                        Number of training epochs (default: 20)
  --batch_size          BATCH_SIZE
                        Batch size (default: 64)
  --display_step        DISPLAY_STEP
                        Number of steps to display log into TensorBoard (default: 20)
  --allow_soft_placement ALLOW_SOFT_PLACEMENT
                        Allow device soft device placement

Results

With the Yelp-2015 dataset, after 5 epochs, we achieved:

  • 69.79% accuracy on the dev set
  • 69.62% accuracy on the test set

No systematic hyper-parameter tunning was performed. The result reported in the paper is 71.0% for the Yelp-2015.

alt tag

Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
Official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch.

Multi-speaker DGP This repository provides official implementation of deep Gaussian process (DGP)-based multi-speaker speech synthesis with PyTorch. O

sarulab-speech 24 Sep 07, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022