Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

Overview

A Unified Framework for Parameter-Efficient Transfer Learning

This is the official implementation of the paper:

Towards a Unified View of Parameter-Efficient Transfer Learning
Junxian He*, Chunting Zhou*, Xuezhe Ma, Taylor Berg-Kirkpatrick, Graham Neubig
Preprint 2021

Parameter-efficient transfer learning (PETL) methods only tune a small number of (extra) parameters to adapt large pretrained models into downstream tasks. This paper reveals the connection among existing PETL methods such as adapters, prefix tuning, and LoRA, and proposes a unified framework to interpret their designs. This unified framework is able to instantiate existing approaches by varying values along several defined design dimensions, which also provides principled guidance to design new PETL methods. In this repo as well as in the paper, we include examples of how we easily derive new state-of-the-art PETL methods from the unified framework.

intro

Dependencies

This repo is a fork of the huggingface transformers repo (forked on June 23, 2021), and the code is tested on PyTorch 1.9.0. Please follow the instructions below to install dependencies after you set up PyTorch:

git clone [email protected]:jxhe/MAM-adapter.git
cd MAM-adapter

# install transformers from this repo
pip install -e .

# install other requirements
pip install datasets==1.11.0

# used to compute BLEU score for en-ro translation
git clone [email protected]:moses-smt/mosesdecoder.git

Usage

MAM-Adapter

Run the following command to reproduce the MAM-Adapter results in the paper on the XSum, en-ro translation, MNLI, or SST2 datasets:

bash exps/run_{xsum|en_ro|glue}.sh

We ran all the experiments with one A6000 or A100 GPU that has >=40GB GPU memory -- if your GPU does not have a large memory, you may need to reduce the bsz (max_tokens_per_batch for en-ro) and increase the gradient_steps values in the scripts to match our effective batch size. You may train with multiple GPUs easily with python -m torch.distributed.launch --nproc_per_node {num_gpus} to enable data parallelism.

Training time: in our experiments that use one GPU, XSum takes 24 hours w/ A100 or 50 hours w/ A6000, en-ro takes 20 hours w/ A6000, SST2 takes 2 hours, and MNLI takes 10 hours.

Advanced Usage for Other PETL Variants

As the paper shows, our unified framework instantiates different PETL variants easily by varying along the design dimensions. You can modify the script to train other PETL variants as we studied in the paper, we include some examples in run_xsum.sh, which can be directly applied to the other scripts as well:

# ----- MAM adapter -----
attn_mode="prefix"
attn_option="concat"
attn_composition="add"
attn_bn=30  # attn bottleneck dim

ffn_mode="adapter"
ffn_option="parallel"
ffn_adapter_layernorm_option="none"
ffn_adapter_init_option="lora"
ffn_adapter_scalar="4"
ffn_bn=512 # ffn bottleneck dim

# ----- prefix tuning baseline ----- 
# attn_mode="prefix"
# attn_option="concat"
# attn_composition="add"
# attn_bn=200  # attn bottleneck dim

# ffn_mode="none"
# ffn_option="parallel"
# ffn_adapter_layernorm_option="none"
# ffn_adapter_init_option="lora"
# ffn_adapter_scalar="4"
# ffn_bn=512 # ffn bottleneck dim

# ----- Houlsby Adapter ----- 
# attn_mode="adapter"
# attn_option="sequential"
# attn_composition="add"
# attn_bn=200  # attn bottleneck dim

# ffn_mode="adapter"
# ffn_option="sequential"
# ffn_adapter_layernorm_option="none"
# ffn_adapter_init_option="bert"
# ffn_adapter_scalar="1"
# ffn_bn=200 # ffn bottleneck dim

# ----- FFN Scaled Parallel Adapter ----- 
# attn_mode="None"
# attn_option="parallel"
# attn_composition="add"
# attn_bn=200  # attn bottleneck dim

# ffn_mode="adapter"
# ffn_option="parallel"
# ffn_adapter_layernorm_option="none"
# ffn_adapter_init_option="lora"
# ffn_adapter_scalar="4"
# ffn_bn=512 # ffn bottleneck dim

There are more variations than what is shown above. Please see a complete explanation of these arguments here in petl/options.py. The results of all the variants reported in the paper could be reproduced by changing these values in the scripts.

Citation

@article{he2021towards,
  title={Towards a Unified View of Parameter-Efficient Transfer Learning},
  author={He, Junxian and Zhou, Chunting and Ma, Xuezhe and Berg-Kirkpatrick, Taylor and Neubig, Graham},
  journal={arXiv preprint arXiv:2110.04366},
  year={2021}
}
Owner
Junxian He
NLP/ML PhD student at CMU
Junxian He
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
Good Classification Measures and How to Find Them

Good Classification Measures and How to Find Them This repository contains supplementary materials for the paper "Good Classification Measures and How

Yandex Research 7 Nov 13, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
Nicholas Lee 3 Jan 09, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022