Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Overview

Interactive All-Hex Meshing via Cuboid Decomposition

teaser Video demonstration

This repository contains an interactive software to the PolyCube-based hex-meshing problem. You can solve hex meshing by playing minecraft!

Features include:

  • a 4-stage interactive pipeline that can robustly generate high-quality hex meshes from an input tetrahedral mesh;
  • extensive user control over each stage, such as editing the voxelized PolyCube, positioning surface vertices, and exploring the trade-off among competing quality metrics;
  • automatic alternatives based on GPU-powered continuous optimization that can run at interactive speed.

It is the original implementation of the SIGGRAPH Asia 2021 paper "Interactive All-Hex Meshing via Cuboid Decomposition" by Lingxiao Li, Paul Zhang, Dmitriy Smirnov, Mazdak Abulnaga, Justin Solomon. Check out our paper for a complete description of our pipeline!

Organization

There are three main components of the project.

  • The geomlib folder contains a standalone C++ library with GPU-based geometric operations including point-triangle projection (in arbitrary dimensions), point-tetrahedron projection (in arbitrary dimensions), point-in-tet-mesh inclusion testing, sampling on a triangular mesh, capable of handling tens of thousands of point queries on large meshes in milliseconds.
  • The vkoo folder contains a standalone object-oriented Vulkan graphics engine that is built based on the official Vulkan samples code with a lot of simplification and modification for the purpose of this project.
  • The hex folder contains the application-specific code for our interactive PolyCube-based hex meshing software, and should be most relevant for learning about the implementation details of our paper.

In addition,

  • results.zip contains the *.h5 project file and the *.mesh output hex mesh file for each model in the Table 2 of the paper. The *.h5 project files can be loaded in our software using File > Open.
  • The assets folder contains a small number of tetrahedral meshes to test on, but you can include your own meshes easily (if you only have triangular meshes, try using TetGen or this to mesh the interior first).
  • The external folder contains additional dependencies that are included in the repo.

Dependencies

Main dependencies that are not included in the repo and should be installed first:

  • CMake
  • CUDA (tested with 11.2, 11.3, 11.4, 11.5) and cuDNN
  • Pytorch C++ frontend (tested with 1.7, 1.8, 1.9, 1.10)
  • Vulkan SDK
  • Python3
  • HDF5

There are additional dependencies in external and should be built correctly with the provided CMake hierarchy:

  • Eigen
  • glfw
  • glm
  • glslang
  • imgui
  • spdlog
  • spirv-cross
  • stb
  • yaml-cpp

Linux Instruction

The instruction is slightly different on various Linux distributions. We have tested on Arch Linux and Ubuntu 20.04. First install all dependencies above using the respective package manager. Then download and unzip Pytorch C++ frontend for Linux (tested with cxx11 ABI) -- it should be under the tab Libtorch > C++/Java > CUDA 11.x. Add Torch_DIR=<unzipped folder> to your environment variable lists (or add your unzipped folder to CMAKE_PREFIX_PATH). Then clone the repo (be sure to use --recursive to clone the submodules as well). Next run the usual cmake/make commands to build target hex in Debug or Release mode:

mkdir -p build/Release
cd build/Release
cmake ../.. -DCMAKE_BUILD_TYPE=Release
make hex -j

This should generate an executable named hex under bin/Release/hex which can be run directly. See CMakeLists.txt for more information.

Windows Instruction

Compiling on Windows is trickier than on Linux. The following procedure has been tested to work on multiple Windows machines.

  • Download and install Visual Studio 2019
  • Download and install the newest CUDA Toolkit (tested with 11.2)
  • Download and install cuDNN for Windows (this amounts to copying a bunch of dll's to the CUDA path)
  • Download and install the newest Vulkan SDK binary for Windows
  • Download and install Python3
  • Download and unzip Pytorch C++ frontend for Windows. Then add TORCH_DIR=<unzipped folder> to your environment variable lists.
  • Download and install HDF5 for Windows
  • In VS2019, install CMake tools, and then build the project following this This should generate an executable under bin/Debug or bin/Release.
Owner
Lingxiao Li
Lingxiao Li
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation"

Implicit-Semantic-Response-Alignment Pytorch implementation for "Implicit Semantic Response Alignment for Partial Domain Adaptation" Prerequisites pyt

4 Dec 19, 2022
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Implementation of a Transformer, but completely in Triton

Transformer in Triton (wip) Implementation of a Transformer, but completely in Triton. I'm completely new to lower-level neural net code, so this repo

Phil Wang 152 Dec 22, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022