Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Overview

Interactive All-Hex Meshing via Cuboid Decomposition

teaser Video demonstration

This repository contains an interactive software to the PolyCube-based hex-meshing problem. You can solve hex meshing by playing minecraft!

Features include:

  • a 4-stage interactive pipeline that can robustly generate high-quality hex meshes from an input tetrahedral mesh;
  • extensive user control over each stage, such as editing the voxelized PolyCube, positioning surface vertices, and exploring the trade-off among competing quality metrics;
  • automatic alternatives based on GPU-powered continuous optimization that can run at interactive speed.

It is the original implementation of the SIGGRAPH Asia 2021 paper "Interactive All-Hex Meshing via Cuboid Decomposition" by Lingxiao Li, Paul Zhang, Dmitriy Smirnov, Mazdak Abulnaga, Justin Solomon. Check out our paper for a complete description of our pipeline!

Organization

There are three main components of the project.

  • The geomlib folder contains a standalone C++ library with GPU-based geometric operations including point-triangle projection (in arbitrary dimensions), point-tetrahedron projection (in arbitrary dimensions), point-in-tet-mesh inclusion testing, sampling on a triangular mesh, capable of handling tens of thousands of point queries on large meshes in milliseconds.
  • The vkoo folder contains a standalone object-oriented Vulkan graphics engine that is built based on the official Vulkan samples code with a lot of simplification and modification for the purpose of this project.
  • The hex folder contains the application-specific code for our interactive PolyCube-based hex meshing software, and should be most relevant for learning about the implementation details of our paper.

In addition,

  • results.zip contains the *.h5 project file and the *.mesh output hex mesh file for each model in the Table 2 of the paper. The *.h5 project files can be loaded in our software using File > Open.
  • The assets folder contains a small number of tetrahedral meshes to test on, but you can include your own meshes easily (if you only have triangular meshes, try using TetGen or this to mesh the interior first).
  • The external folder contains additional dependencies that are included in the repo.

Dependencies

Main dependencies that are not included in the repo and should be installed first:

  • CMake
  • CUDA (tested with 11.2, 11.3, 11.4, 11.5) and cuDNN
  • Pytorch C++ frontend (tested with 1.7, 1.8, 1.9, 1.10)
  • Vulkan SDK
  • Python3
  • HDF5

There are additional dependencies in external and should be built correctly with the provided CMake hierarchy:

  • Eigen
  • glfw
  • glm
  • glslang
  • imgui
  • spdlog
  • spirv-cross
  • stb
  • yaml-cpp

Linux Instruction

The instruction is slightly different on various Linux distributions. We have tested on Arch Linux and Ubuntu 20.04. First install all dependencies above using the respective package manager. Then download and unzip Pytorch C++ frontend for Linux (tested with cxx11 ABI) -- it should be under the tab Libtorch > C++/Java > CUDA 11.x. Add Torch_DIR=<unzipped folder> to your environment variable lists (or add your unzipped folder to CMAKE_PREFIX_PATH). Then clone the repo (be sure to use --recursive to clone the submodules as well). Next run the usual cmake/make commands to build target hex in Debug or Release mode:

mkdir -p build/Release
cd build/Release
cmake ../.. -DCMAKE_BUILD_TYPE=Release
make hex -j

This should generate an executable named hex under bin/Release/hex which can be run directly. See CMakeLists.txt for more information.

Windows Instruction

Compiling on Windows is trickier than on Linux. The following procedure has been tested to work on multiple Windows machines.

  • Download and install Visual Studio 2019
  • Download and install the newest CUDA Toolkit (tested with 11.2)
  • Download and install cuDNN for Windows (this amounts to copying a bunch of dll's to the CUDA path)
  • Download and install the newest Vulkan SDK binary for Windows
  • Download and install Python3
  • Download and unzip Pytorch C++ frontend for Windows. Then add TORCH_DIR=<unzipped folder> to your environment variable lists.
  • Download and install HDF5 for Windows
  • In VS2019, install CMake tools, and then build the project following this This should generate an executable under bin/Debug or bin/Release.
Owner
Lingxiao Li
Lingxiao Li
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

35 Jan 03, 2023
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
Ego4d dataset repository. Download the dataset, visualize, extract features & example usage of the dataset

Ego4D EGO4D is the world's largest egocentric (first person) video ML dataset and benchmark suite, with 3,600 hrs (and counting) of densely narrated v

Meta Research 118 Jan 07, 2023