Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Overview

Diaformer

Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022)

Diaformer is an efficient model for automatic diagnosis via symptoms sequence generation. It takes the sequence of symptoms as input, and predicts the inquiry symptoms in the way of sequence generation.

Figure 1: Illustration of symptom attention framework.

Requirements

Our experiments are conducted on Python 3.8 and Pytorch == 1.8.0. The main requirements are:

  • transformers==2.1.1
  • torch
  • numpy
  • tqdm
  • sklearn
  • keras
  • boto3

In the root directory, run following command to install the required libraries.

pip install -r requirement.txt

Usage

  1. Download data

    Download the datasets, then decompress them and put them in the corrsponding documents in \data. For example, put the data of Synthetic Dataset under data/synthetic_dataset.

    The dataset can be downloaded as following links:

  2. Build data

    Switch to the corresponding directory of the dataset and just run preprocess.py to preprocess data and generate a vocabulary of symptoms.

  3. Train and test

    Train and test models by the follow commands.

    Diaformer

    # Train and test on Diaformer
    # Run on MuZhi dataset
    python Diaformer.py --dataset_path data/muzhi_dataset --batch_size 16 --lr 5e-5 --min_probability 0.009 --max_turn 20 --start_test 10 
    
    # Run on Dxy dataset
    python Diaformer.py --dataset_path data/dxy_dataset --batch_size 16 --lr 5e-5 --min_probability 0.012 --max_turn 20 --start_test 10 
    
    # Run on Synthetic dataset
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10

    Diaformer_GPT2

    # Train and test on GPT2 variant of Diaformer
    python GPT2_variant.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10

    Diaformer_UniLM

    # Train and test on UniLM variant of Diaformer
    python UniLM_variant.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10

    Ablation study

    # run ablation study
    # w/o Sequence Shuffle
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10 --no_sequence_shuffle
    
    # w/o Synchronous Learning
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10 --no_synchronous_learning
    
    # w/o Repeated Sequence
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10 --no_repeated_sequence

    Generative inference

    # save the model
    python Diaformer.py --dataset_path data/synthetic_dataset --batch_size 16 --lr 5e-5 --min_probability 0.01 --max_turn 20 --start_test 10 --model_output_path models
    # use the trained model to output the results
    python predict.py --dataset_path data/synthetic_dataset --min_probability 0.01 --max_turn 20 --pretrained_model models/ --result_output_path results.json
Owner
Junying Chen
Junying Chen
Fake Shakespearean Text Generator

Fake Shakespearean Text Generator This project contains an impelementation of stateful Char-RNN model to generate fake shakespearean texts. Files and

Recep YILDIRIM 1 Feb 15, 2022
Sentello is python script that simulates the anti-evasion and anti-analysis techniques used by malware.

sentello Sentello is a python script that simulates the anti-evasion and anti-analysis techniques used by malware. For techniques that are difficult t

Malwation 62 Oct 02, 2022
PyTorch implementation of NATSpeech: A Non-Autoregressive Text-to-Speech Framework

A Non-Autoregressive Text-to-Speech (NAR-TTS) framework, including official PyTorch implementation of PortaSpeech (NeurIPS 2021) and DiffSpeech (AAAI 2022)

760 Jan 03, 2023
BiQE: Code and dataset for the BiQE paper

BiQE: Bidirectional Query Embedding This repository includes code for BiQE and the datasets introduced in Answering Complex Queries in Knowledge Graph

Bhushan Kotnis 1 Oct 20, 2021
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama

Denis Rothman 150 Dec 23, 2022
The source code of "Language Models are Few-shot Multilingual Learners" (MRL @ EMNLP 2021)

Language Models are Few-shot Multilingual Learners Paper This is the source code of the paper [Arxiv] [ACL Anthology]: This code has been written usin

Genta Indra Winata 45 Nov 21, 2022
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022
Shared, streaming Python dict

UltraDict Sychronized, streaming Python dictionary that uses shared memory as a backend Warning: This is an early hack. There are only few unit tests

Ronny Rentner 192 Dec 23, 2022
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Amazon Web Services - Labs 1.1k Dec 27, 2022
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
Collection of scripts to pinpoint obfuscated code

Obfuscation Detection (v1.0) Author: Tim Blazytko Automatically detect control-flow flattening and other state machines Description: Scripts and binar

Tim Blazytko 230 Nov 26, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 02, 2023
Translation for Trilium Notes. Trilium Notes 中文版.

Trilium Translation 中文说明 This repo provides a translation for the awesome Trilium Notes. Currently, I have translated Trilium Notes into Chinese. Test

743 Jan 08, 2023
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022