Simple, hackable offline speech to text - using the VOSK-API.

Overview

Nerd Dictation

Offline Speech to Text for Desktop Linux. - See demo video.

This is a utility that provides simple access speech to text for using in Linux without being tied to a desktop environment.

Simple
This is a single file Python script with minimal dependencies.
Hackable
User configuration lets you manipulate text using Python string operations.
Zero Overhead
As this relies on manual activation there are no background processes.

Dictation is accessed manually with begin/end commands.

This uses the excellent vosk-api.

Usage

It is suggested to bind begin/end/cancel to shortcut keys.

nerd-dictation begin
nerd-dictation end

For details on how this can be used, see: nerd-dictation --help and nerd-dictation begin --help.

Features

Specific features include:

Numbers as Digits

Optional conversion from numbers to digits.

So Three million five hundred and sixty second becomes 3,000,562nd.

A series of numbers (such as reciting a phone number) is also supported.

So Two four six eight becomes 2,468.

Time Out
Optionally end speech to text early when no speech is detected for a given number of seconds. (without an explicit call to end which is otherwise required).
Output Type
Output can simulate keystroke events (default) or simply print to the standard output.
User Configuration Script
User configuration is just a Python script which can be used to manipulate text using Python's full feature set.

See nerd-dictation begin --help for details on how to access these options.

Dependencies

  • Python 3.
  • The VOSK-API.
  • parec command (for recording from pulse-audio).
  • xdotool command to simulate keyboard input.

Install

pip3 install vosk
git clone https://github.com/ideasman42/nerd-dictation.git
cd nerd-dictation
wget https://alphacephei.com/kaldi/models/vosk-model-small-en-us-0.15.zip
unzip vosk-model-small-en-us-0.15.zip
mv vosk-model-small-en-us-0.15 model

To test dictation:

./nerd-dictation begin --vosk-model-dir=./model &
# Start speaking.
./nerd-dictation end
  • Reminder that it's up to you to bind begin/end/cancel to actions you can easily access (typically key shortcuts).

  • To avoid having to pass the --vosk-model-dir argument, copy the model to the default path:

    mkdir -p ~/.config/nerd-dictation
    mv ./model ~/.config/nerd-dictation

Hint

Once this is working properly you may wish to download one of the larger language models for more accurate dictation. They are available here.

Configuration

This is an example of a trivial configuration file which simply makes the input text uppercase.

# ~/.config/nerd-dictation/nerd-dictation.py
def nerd_dictation_process(text):
    return text.upper()

A more comprehensive configuration is included in the examples/ directory.

Hints

  • The processing function can be used to implement your own actions using keywords of your choice. Simply return a blank string if you have implemented your own text handling.
  • Context sensitive actions can be implemented using command line utilities to access the active window.

Paths

Local Configuration
~/.config/nerd-dictation/nerd-dictation.py
Language Model

~/.config/nerd-dictation/model

Note that --vosk-model-dir=PATH can be used to override the default.

Command Line Arguments

Output of nerd-dictation --help

usage:

nerd-dictation [-h]  ...

This is a utility that activates text to speech in Linux. While it could use any system currently it uses the VOSK-API.

positional arguments:

begin: Begin dictation.
end: End dictation.
cancel: Cancel dictation.
optional arguments:
-h, --help show this help message and exit

Subcommand: begin

usage:

nerd-dictation begin [-h] [--cookie FILE_PATH] [--vosk-model-dir DIR]
                     [--pulse-device-name IDENTIFIER]
                     [--sample-rate HZ] [--defer-output] [--continuous]
                     [--timeout SECONDS] [--idle-time SECONDS]
                     [--delay-exit SECONDS]
                     [--punctuate-from-previous-timeout SECONDS]
                     [--full-sentence] [--numbers-as-digits]
                     [--numbers-use-separator] [--output OUTPUT_METHOD]
                     [- ...]

This creates the directory used to store internal data, so other commands such as sync can be performed.

optional arguments:
-h, --help show this help message and exit
--cookie FILE_PATH
  Location for writing a temporary cookie (this file is monitored to begin/end dictation).
--vosk-model-dir DIR
  Path to the VOSK model, see: https://alphacephei.com/vosk/models
--pulse-device-name IDENTIFIER
  The name of the pulse-audio device to use for recording. See the output of "pactl list sources" to find device names (using the identifier following "Name:").
--sample-rate HZ
  The sample rate to use for recording (in Hz). Defaults to 44100.
--defer-output

When enabled, output is deferred until exiting.

This prevents text being typed during speech (implied with --output=STDOUT)

--continuous Enable this option, when you intend to keep the dictation process enabled for extended periods of time. without this enabled, the entirety of this dictation session will be processed on every update. Only used when --defer-output is disabled.
--timeout SECONDS
  Time out recording when no speech is processed for the time in seconds. This can be used to avoid having to explicitly exit (zero disables).
--idle-time SECONDS
  Time to idle between processing audio from the recording. Setting to zero is the most responsive at the cost of high CPU usage. The default value is 0.1 (processing 10 times a second), which is quite responsive in practice (the maximum value is clamped to 0.5)
--delay-exit SECONDS
  The time to continue running after an exit request. this can be useful so "push to talk" setups can be released while you finish speaking (zero disables).
--punctuate-from-previous-timeout SECONDS
  The time-out in seconds for detecting the state of dictation from the previous recording, this can be useful so punctuation it is added before entering the dictation(zero disables).
--full-sentence
  Capitalize the first character. This is also used to add either a comma or a full stop when dictation is performed under the --punctuate-from-previous-timeout value.
--numbers-as-digits
  Convert numbers into digits instead of using whole words.
--numbers-use-separator
  Use a comma separators for numbers.
--output OUTPUT_METHOD
 

Method used to at put the result of speech to text.

  • SIMULATE_INPUT simulate keystrokes (default).
  • STDOUT print the result to the standard output. Be sure only to handle text from the standard output as the standard error may be used for reporting any problems that occur.
- ... End argument parsing.
This can be used for user defined arguments which configuration scripts may read from the sys.argv.

Subcommand: end

usage:

nerd-dictation end [-h] [--cookie FILE_PATH]

This ends dictation, causing the text to be typed in.

optional arguments:
-h, --help show this help message and exit
--cookie FILE_PATH
  Location for writing a temporary cookie (this file is monitored to begin/end dictation).

Subcommand: cancel

usage:

nerd-dictation cancel [-h] [--cookie FILE_PATH]

This cancels dictation.

optional arguments:
-h, --help show this help message and exit
--cookie FILE_PATH
  Location for writing a temporary cookie (this file is monitored to begin/end dictation).

Details

  • Typing in results will never press enter/return.
  • Pulse audio is used for recording.
  • Recording and speech to text a performed in parallel.

Examples

Store the result of speech to text as a variable in the shell:

SPEECH="$(nerd-dictation begin --timeout=1.0 --output=STDOUT)"

Example Configurations

These are example configurations you may use as a reference.

Other Software

  • Elograf - nerd-dictation GUI front-end that runs as a tray icon.

Limitations

  • Text from VOSK is all lower-case, while the user configuration can be used to set the case of common words like I this isn't very convenient (see the example configuration for details).

  • For some users the delay in start up may be noticeable on systems with slower hard disks especially when running for the 1st time (a cold start).

    This is a limitation with the choice not to use a service that runs in the background. Recording begins before any the speech-to-text components are loaded to mitigate this problem.

Further Work

  • And a general solution to capitalize words (proper nouns for example).
  • Wayland support (this should be quite simple to support and mainly relies on a replacement for xdotool).
  • Add a setup.py for easy installation on uses systems.
  • Possibly other speech to text engines (only if they provide some significant benefits).
  • Possibly support Windows & macOS.
Owner
Campbell Barton
Campbell Barton
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
TensorFlow code and pre-trained models for BERT

BERT ***** New March 11th, 2020: Smaller BERT Models ***** This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece

Google Research 32.9k Jan 08, 2023
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022
Signature remover is a NLP based solution which removes email signatures from the rest of the text.

Signature Remover Signature remover is a NLP based solution which removes email signatures from the rest of the text. It helps to enchance data conten

Forges Alterway 8 Jan 06, 2023
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

3.4k Dec 27, 2022
Big Bird: Transformers for Longer Sequences

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the c

Google Research 457 Dec 23, 2022
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022
Predict an emoji that is associated with a text

Sentiment Analysis Sentiment analysis in computational linguistics is a general term for techniques that quantify sentiment or mood in a text. Can you

Tetsumichi(Telly) Umada 30 Sep 07, 2022
Making text a first-class citizen in TensorFlow.

TensorFlow Text - Text processing in Tensorflow IMPORTANT: When installing TF Text with pip install, please note the version of TensorFlow you are run

1k Dec 26, 2022
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
Pipeline for training LSA models using Scikit-Learn.

Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j

Dani El-Ayyass 23 Sep 05, 2022
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a

Phil Wang 44 Jul 28, 2022
Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER (EMNLP 2021).

Data and evaluation code for the paper WikiNEuRal: Combined Neural and Knowledge-based Silver Data Creation for Multilingual NER. @inproceedings{tedes

Babelscape 40 Dec 11, 2022
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022