PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Related tags

Deep Learningscrl
Overview

KakaoBrain pytorch pytorch

Spatially Consistent Representation Learning (CVPR'21)

Abstract

SCRL is a self-supervised learning method that allows you to obtain a spatially consistent dense representation, especially useful for localization tasks such as object detection and segmentation. You might be able to improve your own localization task by simply initializing the backbone model with those parameters trained using our method. Please refer to the paper for more details.

Requirements

We have tested the code on the following environments:

  • Python 3.7.7 / Pytorch 1.6.0 / torchvision 0.7.0 / CUDA 10.1 / Ubuntu 18.04
  • Python 3.8.3 / Pytorch 1.7.1 / torchvision 0.8.2 / CUDA 11.1 / Ubuntu 18.04

Run the following command to install dependencies:

pip install -r requirements.txt

Configuration

The config directory contains predefined YAML configuration files for different learning methods and schedules.

There are two alternative ways to change training configuration:

  • Change the value of the field of interest directly in config/*.yaml files.
  • Pass the value as a command argument to main.py with the name that represents the field's hierarchy using the delimiter /.

Note that the values given by the command argument take precedence over the ones stored in the YAML file.

Refer to the Dataset subsection below for an example.

Model

We officially support ResNet-50 and ResNet-101 backbones. Note that all the hyperparameters have been tuned based on ResNet-50.

Dataset

Currently, only ImageNet dataset is supported. You must specify the dataset path in one of the following ways:

# (option 1) set field `dataset.root` in the YAML configuration file.
data:
  root: your_own_path
  ...
# (option 2) pass `--dataset/root` as an argument of the shell command.
$ python main.py --data/root your_own_path ...

How to Run

Overview

The code consists of two main parts: self-supervised pre-training(upstream) and linear evaluation protocol(downstream). After the pre-training is done, the evaluation protocol is automatically run by the default configurations. Note that, for simplicity, this code does not hold out validation set from train set as in BYOL paper. Although this may not be a rigorous implementation, training the linear classifier itself is not in our main interest here and the protocol still does its job well enough as an evaluation metric. Also note that the protocol may not be exactly the same with the details in other literatures in terms of batch size and learning rate schedule.

Resource & Batchsize

We recommend you run the code in a multi-node environment in order to reproduce the results reported in the paper. We used 4 V100 x 8 nodes = 32 GPUs for training. Under this circumstance, our upstream batch size is 8192 and downstream batch size is 4096. When the number of GPUs dwindled to half, we observed performance degradation. Although BYOL-like methods do not use negative examples in an explicit way, they can still suffer performance drops when their batch size is reduced, as illustrated in Figure 3 in BYOL paper.

Single-node Training

If your YAML configuration file is ./confing/scrl_200ep.yaml, run the command as follows:

$ python main.py --config config/scrl_200_ep.yaml

Multi-node Training

To train a single model with 2 nodes, for instance, run the commands below in sequence:

# on the machine #0
$ python main.py --config config/scrl_200_ep.yaml \
                 --dist_url tcp://{machine_0_ip}:{available_port} \
                 --num_machines 2 \
                 --machine_rank 0
# on the machine #1
$ python main.py --config config/scrl_200_ep.yaml \
                 --dist_url tcp://{machine_1_ip}:{available_port} \
                 --num_machines 2 \
                 --machine_rank 1

If IP address and port number are not known in advance, you can first run the command with --dist_url=auto in the master node. Then check the IP address and available port number that are printed on the command line, to which you should refer to launch the other nodes.

Linear Evaluation Only

You can also run the protocol using any given checkpoint on a stand-alone basis. You can evaluate the latest checkpoint anytime after the very first checkpoint has been dumped. Refer to the following command:

$ python main.py --config config/scrl_200ep.yaml --train/enabled=False --load_dir ...

Saving & Loading Checkpoints

Saved Filenames

  • save_dir will be automatically determined(with sequential number suffixes) unless otherwise designated.
  • Model's checkpoints are saved in ./{save_dir}/checkpoint_{epoch}.pth.
  • Symlinks of the last checkpoints are saved in ./{save_dir}/checkpoint_last.pth.

Automatic Loading

  • SCRLTraniner will automatically load checkpoint_last.pth if it exists in save_dir.
  • By default, save_dir is identical to load_dir. However, you can also set load_dir seperately.

Results

Method Epoch Linear Eval (Acc.) COCO BBox (AP) COCO Segm (AP) Checkpoint
Random -- --  /   --   29.77 / 30.95 28.70 --
IN-sup. 90 --  /  74.3 38.52 / 39.00 35.44 --
BYOL 200 72.90 / 73.14 38.35 / 38.86 35.96 download
BYOL 1000 74.47 / 74.51 40.10 / 40.19 37.16 download
SCRL 200 66.78 / 68.27 40.49 / 41.02 37.50 download
SCRL 1000 70.67 / 70.66 40.92 / 41.40 37.92 download
  • Epoch: self-supervised pre-training epochs
  • Linear Eval(linear evaluation): online / offline
  • COCO Bbox(Object Detection): Faster R-CNN w.FPN / Mask R-CNN w.FPN
  • COCO Segm(Instance Segmentation): Mask R-CNN w.FPN

On/offline Linear Evaluation

The online evaluation is done with a linear classifier attached to the top of the backbone, which is trained simultaneously during pre-training under its own objective but does NOT backpropagate the gradients to the main model. This facilitates monitoring of the learning progress while there is no target performance measure for self-supervised learning. The offline evaluation refers to the commonly known standard protocol.

COCO Localization Tasks

As you can see in the table, our method significantly boosts the performance of the localization downstream tasks. Note that the values in the table can be slightly different from the paper because of different random seeds. For the COCO localization tasks, we used Detectron2 repository publicly available, which is not included in this code. We simply initialized the ResNet-50 backbone with pre-trained parameters by our method and finetuned it under the downstream objective. Note that we used synchronized BN for all the configurable layers and retained the default hyperparameters for everything else including the training schedule(x1).

Downloading Pretrained Checkpoints

You can download the backbone checkpoints via those links in the table. To load them in our code and run the linear evaluation, change the filename to checkpoint_last.pth (or make symlink) and pass the parent directory path to either save_dir or load_dir.

Hyperparameters

For the 1000 epoch checkpoint of SCRL, we simply used the hyperparameters adopted in the official BYOL implementation, which is different from the description in the paper, but still matches the reported performance. As described in the Appendix in the paper, there could be potential room for improvement by extensive hyperparameter search.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{roh2021scrl,
  title={Spatilly Consistent Representation Learning},
  author    = {Byungseok Roh and
               Wuhyun Shin and
               Ildoo Kim and
               Sungwoong Kim},
  booktitle = {CVPR},
  publisher = {IEEE},
  year      = {2021}
}

Contact for Issues

License

This project is licensed under the terms of the Apache License 2.0.

Copyright 2021 Kakao Brain Corp. https://www.kakaobrain.com All Rights Reserved.

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
wlad 2 Dec 19, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
3D HourGlass Networks for Human Pose Estimation Through Videos

3D-HourGlass-Network 3D CNN Based Hourglass Network for Human Pose Estimation (3D Human Pose) from videos. This was my summer'18 research project. Dis

Naman Jain 51 Jan 02, 2023
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"

DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to

倪仕文 (Shiwen Ni) 58 Nov 10, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023