Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Overview

Scene Representation Networks

Paper Conference

This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations"

Scene Representation Networks (SRNs) are a continuous, 3D-structure-aware scene representation that encodes both geometry and appearance. SRNs represent scenes as continuous functions that map world coordinates to a feature representation of local scene properties. By formulating the image formation as a neural, 3D-aware rendering algorithm, SRNs can be trained end-to-end from only 2D observations, without access to depth or geometry. SRNs do not discretize space, smoothly parameterizing scene surfaces, and their memory complexity does not scale directly with scene resolution. This formulation naturally generalizes across scenes, learning powerful geometry and appearance priors in the process.

srns_video

Usage

Installation

This code was tested with python 3.7 and pytorch 1.2. I recommend using anaconda for dependency management. You can create an environment with name "srns" with all dependencies like so:

conda env create -f environment.yml

This repository depends on a git submodule, pytorch-prototyping. To clone both the main repo and the submodule, use

git clone --recurse-submodules https://github.com/vsitzmann/scene-representation-networks.git

High-Level structure

The code is organized as follows:

  • dataio.py loads training and testing data.
  • data_util.py and util.py contain utility functions.
  • train.py contains the training code.
  • test.py contains the testing code.
  • srns.py contains the core SRNs model.
  • hyperlayers.py contains implementations of different hypernetworks.
  • custom_layers.py contains implementations of the raymarcher and the DeepVoxels U-Net renderer.
  • geometry.py contains utility functions for 3D and projective geometry.
  • util.py contains misc utility functions.

Pre-Trained models

There are pre-trained models for the shapenet car and chair datasets available, including tensorboard event files of the full training process.

Please download them here.

The checkpoint is in the "checkpoints" directory - to load weights from the checkpoint, simply pass the full path to the checkpoint to the "--checkpoint_path" command-line argument.

To inspect the progress of how I trained these models, run tensorboard in the "events" subdirectory.

Data

Four different datasets appear in the paper:

  • Shapenet v2 chairs and car classes.
  • Shepard-Metzler objects.
  • Bazel face dataset.

Please download the datasets here.

Rendering your own datasets

I have put together a few scripts for the Blender python interface that make it easy to render your own dataset. Please find them here.

Coordinate and camera parameter conventions

This code uses an "OpenCV" style camera coordinate system, where the Y-axis points downwards (the up-vector points in the negative Y-direction), the X-axis points right, and the Z-axis points into the image plane. Camera poses are assumed to be in a "camera2world" format, i.e., they denote the matrix transform that transforms camera coordinates to world coordinates.

The code also reads an "intrinsics.txt" file from the dataset directory. This file is expected to be structured as follows (unnamed constants are unused):

f cx cy 0.
0. 0. 0.
1.
img_height img_width

The focal length, cx and cy are in pixels. Height and width are the resolution of the image.

Training

See python train.py --help for all train options. Example train call:

python train.py --data_root [path to directory with dataset] \
                --val_root [path to directory with train_val dataset] \
                --logging_root [path to directory where tensorboard summaries and checkpoints should be written to] 

To monitor progress, the training code writes tensorboard summaries every 100 steps into a "events" subdirectory in the logging_root.

For experiments described in the paper, config-files are available that configure the command-line flags according to the settings in the paper. You only need to edit the dataset path. Example call:

[edit train_configs/cars.yml to point to the correct dataset and logging paths]
python train.py --config_filepath train_configs/cars.yml

Testing

Example test call:

python test.py --data_root [path to directory with dataset] ] \
               --logging_root [path to directoy where test output should be written to] \
               --num_instances [number of instances in training set (for instance, 2433 for shapenet cars)] \
               --checkpoint [path to checkpoint]

Again, for experiments described in the paper, config-files are available that configure the command-line flags according to the settings in the paper. Example call:

[edit test_configs/cars.yml to point to the correct dataset and logging paths]
python test.py --config_filepath test_configs/cars_training_set_novel_view.yml

Misc

Citation

If you find our work useful in your research, please cite:

@inproceedings{sitzmann2019srns,
	author = {Sitzmann, Vincent 
	          and Zollh{\"o}fer, Michael
	          and Wetzstein, Gordon},
	title = {Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations},
	booktitle = {Advances in Neural Information Processing Systems},
	year={2019}
}

Submodule "pytorch_prototyping"

The code in the subdirectory "pytorch_prototyping" comes from a library of custom pytorch modules that I use throughout my research projects. You can find it here.

Contact

If you have any questions, please email Vincent Sitzmann at [email protected].

Owner
Vincent Sitzmann
Incoming Assistant Professor @mit EECS. I'm researching neural scene representations - the way neural networks learn to represent information on our world.
Vincent Sitzmann
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022