RTSeg: Real-time Semantic Segmentation Comparative Study

Overview

Real-time Semantic Segmentation Comparative Study

The repository contains the official TensorFlow code used in our papers:

Description

Semantic segmentation benefits robotics related applications especially autonomous driving. Most of the research on semantic segmentation is only on increasing the accuracy of segmentation models with little attention to computationally efficient solutions. The few work conducted in this direction does not provide principled methods to evaluate the     different design choices for segmentation. In RTSeg, we address this gap by presenting a real-time semantic segmentation benchmarking framework with a decoupled design for feature extraction and decoding methods. The code and the experimental results are presented on the CityScapes dataset for urban scenes.



Models

Encoder Skip U-Net DilationV1 DilationV2
VGG-16 Yes Yes Yes No
ResNet-18 Yes Yes Yes No
MobileNet Yes Yes Yes Yes
ShuffleNet Yes Yes Yes Yes

NOTE: The rest of the pretrained weights for all the implemented models will be released soon. Stay in touch for the updates.

Reported Results

Test Set

Model GFLOPs Class IoU Class iIoU Category IoU Category iIoU
SegNet 286.03 56.1 34.2 79.8 66.4
ENet 3.83 58.3 24.4 80.4 64.0
DeepLab - 70.4 42.6 86.4 67.7
SkipNet-VGG16 - 65.3 41.7 85.7 70.1
ShuffleSeg 2.0 58.3 32.4 80.2 62.2
SkipNet-MobileNet 6.2 61.5 35.2 82.0 63.0

Validation Set

Encoder Decoder Coarse mIoU
MobileNet SkipNet No 61.3
ShuffleNet SkipNet No 55.5
ResNet-18 UNet No 57.9
MobileNet UNet No 61.0
ShuffleNet UNet No 57.0
MobileNet Dilation No 57.8
ShuffleNet Dilation No 53.9
MobileNet SkipNet Yes 62.4
ShuffleNet SkipNet Yes 59.3

** GFLOPs is computed on image resolution 360x640. However, the mIOU(s) are computed on the official image resolution required by CityScapes evaluation script 1024x2048.**

** Regarding Inference time, issue is reported here. We were not able to outperform the reported inference time from ENet architecture it could be due to discrepencies in the optimization we perform. People are welcome to improve on the optimization method we're using.

Usage

  1. Download the weights, processed data, and trained meta graphs from here
  2. Extract pretrained_weights.zip
  3. Extract full_cityscapes_res.zip under data/
  4. Extract unet_resnet18.zip under experiments/

Run

The file named run.sh provide a good example for running different architectures. Have a look at this file.

Examples to the running command in run.sh file:

python3 main.py --load_config=[config_file_name].yaml [train/test] [Trainer Class Name] [Model Class Name]
  • Remove comment from run.sh for running fcn8s_mobilenet on the validation set of cityscapes to get its mIoU. Our framework evaluation will produce results lower than the cityscapes evaluation script by small difference, for the final evaluation we use the cityscapes evaluation script. UNet ResNet18 should have 56% on validation set, but with cityscapes script we got 57.9%. The results on the test set for SkipNet-MobileNet and SkipNet-ShuffleNet are publicly available on the Cityscapes Benchmark.
python3 main.py --load_config=unet_resnet18_test.yaml test Train LinkNET
  • To measure running time, run in inference mode.
python3 main.py --load_config=unet_resnet18_test.yaml inference Train LinkNET
  • To run on different dataset or model, take one of the configuration files such as: config/experiments_config/unet_resnet18_test.yaml and modify it or create another .yaml configuration file depending on your needs.

NOTE: The current code does not contain the optimized code for measuring inference time, the final code will be released soon.

Main Dependencies

Python 3 and above
tensorflow 1.3.0/1.4.0
numpy 1.13.1
tqdm 4.15.0
matplotlib 2.0.2
pillow 4.2.1
PyYAML 3.12

All Dependencies

pip install -r [requirements_gpu.txt] or [requirements.txt]

Citation

If you find RTSeg useful in your research, please consider citing our work:

@ARTICLE{2018arXiv180302758S,
   author = {{Siam}, M. and {Gamal}, M. and {Abdel-Razek}, M. and {Yogamani}, S. and
    {Jagersand}, M.},
    title = "{RTSeg: Real-time Semantic Segmentation Comparative Study}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1803.02758},
 primaryClass = "cs.CV",
 keywords = {Computer Science - Computer Vision and Pattern Recognition},
     year = 2018,
    month = mar,
   adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180302758S},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

If you find ShuffleSeg useful in your research, please consider citing it as well:

@ARTICLE{2018arXiv180303816G,
   author = {{Gamal}, M. and {Siam}, M. and {Abdel-Razek}, M.},
    title = "{ShuffleSeg: Real-time Semantic Segmentation Network}",
  journal = {ArXiv e-prints},
archivePrefix = "arXiv",
   eprint = {1803.03816},
 primaryClass = "cs.CV",
 keywords = {Computer Science - Computer Vision and Pattern Recognition},
     year = 2018,
    month = mar,
   adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180303816G},
  adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

Related Project

Real-time Motion Segmentation using 2-stream shuffleseg Code

Owner
Mennatullah Siam
PhD Student
Mennatullah Siam
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Official pytorch implementation of Rainbow Memory (CVPR 2021)

Rainbow Memory: Continual Learning with a Memory of Diverse Samples

Clova AI Research 91 Dec 17, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
The final project of "Applying AI to 3D Medical Imaging Data" from "AI for Healthcare" nanodegree - Udacity.

Quantifying Hippocampus Volume for Alzheimer's Progression Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder that result

Omar Laham 1 Jan 14, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022