MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

Overview

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

Introduction

The 3D LiDAR place recognition aims to estimate a coarse localization in a previously seen environment based on a single scan from a rotating 3D LiDAR sensor. The existing solutions to this problem include hand-crafted point cloud descriptors (e.g., ScanContext, M2DP, LiDAR IRIS) and deep learning-based solutions (e.g., PointNetVLAD, PCAN, LPD-Net, DAGC, MinkLoc3D), which are often only evaluated on accumulated 2D scans from the Oxford RobotCat dataset. We introduce MinkLoc3D-SI, a sparse convolution-based solution that utilizes spherical coordinates of 3D points and processes the intensity of the 3D LiDAR measurements, improving the performance when a single 3D LiDAR scan is used. Our method integrates the improvements typical for hand-crafted descriptors (like ScanContext) with the most efficient 3D sparse convolutions (MinkLoc3D). Our experiments show improved results on single scans from 3D LiDARs (USyd Campus dataset) and great generalization ability (KITTI dataset). Using intensity information on accumulated 2D scans (RobotCar Intensity dataset) improves the performance, even though spherical representation doesn’t produce a noticeable improvement. As a result, MinkLoc3D-SI is suited for single scans obtained from a 3D LiDAR, making it applicable in autonomous vehicles.

Fig1

Citation

Paper details will be uploaded after acceptance. This work is an extension of Jacek Komorowski's MinkLoc3D.

Environment and Dependencies

Code was tested using Python 3.8 with PyTorch 1.7 and MinkowskiEngine 0.5.0 on Ubuntu 18.04 with CUDA 11.0.

The following Python packages are required:

  • PyTorch (version 1.7)
  • MinkowskiEngine (version 0.5.0)
  • pytorch_metric_learning (version 0.9.94 or above)
  • numba
  • tensorboard
  • pandas
  • psutil
  • bitarray

Modify the PYTHONPATH environment variable to include absolute path to the project root folder:

export PYTHONPATH=$PYTHONPATH:/.../.../MinkLoc3D-SI

Datasets

Preprocessed University of Sydney Campus dataset (USyd) and Oxford RobotCar dataset with intensity channel (IntensityOxford) available here. Extract the dataset folders on the same directory as the project code, so that you have three folders there: 1) IntensityOxford/ 2) MinkLoc3D-SI/ and 3) USyd/.

The pickle files used for positive/negative examples assignment are compatible with the ones introduced in PointNetVLAD and can be generated using the scripts in generating_queries/ folder. The benchmark datasets (Oxford and In-house) introduced in PointNetVLAD can also be used following the instructions in PointNetVLAD.

Before the network training or evaluation, run the below code to generate pickles with positive and negative point clouds for each anchor point cloud.

cd generating_queries/ 

# Generate training tuples for the USyd Dataset
python generate_training_tuples_usyd.py

# Generate evaluation tuples for the USyd Dataset
python generate_test_sets_usyd.py

# Generate training tuples for the IntensityOxford Dataset
python generate_training_tuples_intensityOxford.py

# Generate evaluation tuples for the IntensityOxford Dataset
python generate_test_sets_intensityOxford.py

Training

To train MinkLoc3D-SI network, prepare the data as described above. Edit the configuration file (config/config_usyd.txt or config/config_intensityOxford.txt):

  • num_points - number of points in the point cloud. Points are randomly subsampled or zero-padding is applied during loading, if there number of points is too big/small
  • max_distance - maximum used distance from the sensor, points further than max_distance are removed
  • dataset_name - USyd / IntensityOxford / Oxford
  • dataset_folder - path to the dataset folder
  • batch_size_limit parameter depending on available GPU memory. In our experiments with 10GB of GPU RAM in the case of USyd (23k points) the limit was set to 84, for IntensityOxford (4096 points) the limit was 256.

Edit the model configuration file (models/minkloc_config.txt):

  • version - MinkLoc3D / MinkLoc3D-I / MinkLoc3D-S / MinkLoc3D-SI
  • mink_quantization_size - desired quantization (IntensityOxford and Oxford coordinates are normalized [-1, 1], so the quantization parameters need to be adjusted accordingly!):
    • MinkLoc3D/3D-I: qx,qy,qz units: [m, m, m]
    • MinkLoc3D-S/3D-SI qr,qtheta,qphi units: [m, deg, deg]

To train the network, run:

cd training

# To train the desired model on the USyd Dataset
python train.py --config ../config/config_usyd.txt --model_config ../models/minkloc_config.txt

Evaluation

Pre-trained MinkLoc3D-SI trained on USyd is available in the weights folder. To evaluate run the following command:

cd eval

# To evaluate the model trained on the USyd Dataset
python evaluate.py --config ../config/config_usyd.txt --model_config ../models/minkloc_config.txt --weights ../weights/MinkLoc3D-SI-USyd.pth

License

Our code is released under the MIT License (see LICENSE file for details).

References

  1. J. Komorowski, "MinkLoc3D: Point Cloud Based Large-Scale Place Recognition", Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), (2021)
  2. M. A. Uy and G. H. Lee, "PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022