PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

Overview

StyleSpeech - PyTorch Implementation

PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation.

Status (2021.06.09)

  • StyleSpeech
  • Meta-StyleSpeech

Quickstart

Dependencies

You can install the Python dependencies with

pip3 install -r requirements.txt

Inference

You have to download the pretrained models and put them in output/ckpt/LibriTTS/.

For English single-speaker TTS, run

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --ref_audio path/to/reference_audio.wav --speaker_id <SPEAKER_ID> --restore_step 100000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

The generated utterances will be put in output/result/. Your synthesized speech will have ref_audio's style spoken by speaker_id speaker. Note that the controllability of speakers is not a vital interest of StyleSpeech.

Batch Inference

Batch inference is also supported, try

python3 synthesize.py --source preprocessed_data/LibriTTS/val.txt --restore_step 100000 --mode batch -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

to synthesize all utterances in preprocessed_data/LibriTTS/val.txt. This can be viewed as a reconstruction of validation datasets referring to themselves for the reference style.

Controllability

The pitch/volume/speaking rate of the synthesized utterances can be controlled by specifying the desired pitch/energy/duration ratios. For example, one can increase the speaking rate by 20 % and decrease the volume by 20 % by

python3 synthesize.py --text "YOUR_DESIRED_TEXT" --restore_step 100000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml --duration_control 0.8 --energy_control 0.8

Note that the controllability is originated from FastSpeech2 and not a vital interest of StyleSpeech.

Training

Datasets

The supported datasets are

  • LibriTTS: a multi-speaker English dataset containing 585 hours of speech by 2456 speakers.
  • (will be added more)

Preprocessing

First, run

python3 prepare_align.py config/LibriTTS/preprocess.yaml

for some preparations.

In this implementation, Montreal Forced Aligner (MFA) is used to obtain the alignments between the utterances and the phoneme sequences.

Download the official MFA package and run

./montreal-forced-aligner/bin/mfa_align raw_data/LibriTTS/ lexicon/librispeech-lexicon.txt english preprocessed_data/LibriTTS

or

./montreal-forced-aligner/bin/mfa_train_and_align raw_data/LibriTTS/ lexicon/librispeech-lexicon.txt preprocessed_data/LibriTTS

to align the corpus and then run the preprocessing script.

python3 preprocess.py config/LibriTTS/preprocess.yaml

Training

Train your model with

python3 train.py -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml

TensorBoard

Use

tensorboard --logdir output/log/LibriTTS

to serve TensorBoard on your localhost. The loss curves, synthesized mel-spectrograms, and audios are shown.

Implementation Issues

  1. Use 22050Hz sampling rate instead of 16kHz.
  2. Add one fully connected layer at the beginning of Mel-Style Encoder to upsample input mel-spectrogram from 80 to 128.
  3. The Paper doesn't mention speaker embedding for the Generator, but I add it as a normal multi-speaker TTS. And the style_prototype of Meta-StyleSpeech can be seen as a speaker embedding space.
  4. Use HiFi-GAN instead of MelGAN for vocoding.

Citation

@misc{lee2021stylespeech,
  author = {Lee, Keon},
  title = {StyleSpeech},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/keonlee9420/StyleSpeech}}
}

References

Comments
  • What is the perfermance compared with Adaspeech

    What is the perfermance compared with Adaspeech

    Thank you for your great work and share. Your work looks differ form adaspeech and NAUTILUS. You use GANs which i did not see in other papers regarding adaptative TTS. Have you compare this method with adaspeech1/2? how about the mos and similarity?

    opened by Liujingxiu23 10
  • The size of tensor a (xx) must match the size of tensor b (yy)

    The size of tensor a (xx) must match the size of tensor b (yy)

    Hi I try to run your project. I use cuda 10.1, all requirements are installed (with torch 1.8.1), all models are preloaded. But i have an error: python3 synthesize.py --text "Hello world" --restore_step 200000 --mode single -p config/LibriTTS/preprocess.yaml -m config/LibriTTS/model.yaml -t config/LibriTTS/train.yaml --duration_control 0.8 --energy_control 0.8 --ref_audio ref.wav

    Removing weight norm...
    Raw Text Sequence: Hello world
    Phoneme Sequence: {HH AH0 L OW1 W ER1 L D}
    Traceback (most recent call last):
      File "synthesize.py", line 268, in <module>
        synthesize(model, args.restore_step, configs, vocoder, batchs, control_values)
      File "synthesize.py", line 152, in synthesize
        d_control=duration_control
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, *kwargs)
      File "/usr/local/work/model/StyleSpeech.py", line 144, in forward
        d_control,
      File "/usr/local/work/model/StyleSpeech.py", line 91, in G
        output, mel_masks = self.mel_decoder(output, style_vector, mel_masks)
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, kwargs)
      File "/usr/local/work/model/modules.py", line 307, in forward
        enc_seq = self.mel_prenet(enc_seq, mask)
      File "/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(input, kwargs)
      File "/usr/local/work/model/modules.py", line 259, in forward
        x = x.masked_fill(mask.unsqueeze(-1), 0)
    RuntimeError: The size of tensor a (44) must match the size of tensor b (47) at non-singleton dimension 1
    
    opened by DiDimus 9
  • VCTK datasets

    VCTK datasets

    Hi, I note your paper evaluates the models' performance on VCTK datasets, but I not see the process file about VCTK. Hence, could you share the files, thank you very much.

    opened by XXXHUA 7
  • training error

    training error

    Thanks for your sharing!

    I tried both naive and main branches using your checkpoints, it seems the former one is much better. So I trained AISHELL3 models with small changes on your code and the synthesized waves are good for me.

    However when I add my own data into AISHELL3, some error occurred: Training: 0%| | 3105/900000 [32:05<154:31:49, 1.61it/s] Epoch 2: 69%|██████████████████████▏ | 318/459 [05:02<02:14, 1.05it/s] File "train.py", line 211, in main(args, configs) File "train.py", line 87, in main output = model(*(batch[2:])) File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 165, in forward return self.module(*inputs[0], **kwargs[0]) File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/workspace/StyleSpeech-naive/model/StyleSpeech.py", line 83, in forward ) = self.variance_adaptor( File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/workspace/StyleSpeech-naive/model/modules.py", line 404, in forward x = x + pitch_embedding RuntimeError: The size of tensor a (52) must match the size of tensor b (53) at non-singleton dimension 1

    I only replaced two speakers and preprocessed data the same as the in readme.

    Do you have any advice for this error ? Any suggestion is appreciated.

    opened by MingZJU 6
  • the synthesis result is bad when using pretrain model

    the synthesis result is bad when using pretrain model

    hello sir, thanks for your sharing.

    i meet a problem when i using pretrain model to synthsize demo file. the effect of synthesized wav is so bad.

    do you konw what problem happened?

    pretrain_model: output/ckpt/LibriTTS_meta_learner/200000.pth.tar ref_audio: ref_audio.zip demo_txt: {Promises are often like the butterfly, which disappear after beautiful hover. No matter the ending is perfect or not, you cannot disappear from my world.} demo_wav:demo.zip

    opened by mnfutao 4
  • Maybe style_prototype can instead of ref_mel?

    Maybe style_prototype can instead of ref_mel?

    hello @keonlee9420 , thanks for your contribution on StyleSpeech. When I read your paper and source code, I think that the style_prototype (which is an embedding matrix) maybe can instread of the ref_mel, because there is a CE-loss between style_prototype and style_vector, which can control this embedding matrix close to style. In short, we can give a speaker id to synthesize this speaker's wave. Is it right?

    opened by forwiat 3
  • architecture shows bad results

    architecture shows bad results

    Hi, i have completely repeated your steps for learning. During training, style speech loss fell down, but after learning began, meta style speech loss began to grow up. Can you help with training the model? I can describe my steps in more detail.

    opened by e0xextazy 2
  • UnboundLocalError: local variable 'pitch' referenced before assignment

    UnboundLocalError: local variable 'pitch' referenced before assignment

    Hi, when I run preprocessor.py, I have this problem: /preprocessor.py", line 92, in build_from_path if len(pitch) > 0: UnboundLocalError: local variable 'pitch' referenced before assignment When I try to add a global declaration to the function, it shows NameError: name 'pitch' is not defined How should this be resolved? I would be grateful if I could get your guidance soon.

    opened by Summerxu86 0
  • How can I improve the synthesized results?

    How can I improve the synthesized results?

    I have trained the model for 200k steps, and still, the synthesised results are extremely bad. loss_curve This is what my loss curve looks like. Can you help me with what can I do now to improve my synthesized audio results?

    opened by sanjeevani279 1
  • RuntimeError: Error(s) in loading state_dict for Stylespeech

    RuntimeError: Error(s) in loading state_dict for Stylespeech

    Hi @keonlee9420, I am getting the following error, while running the naive branch :

    Traceback (most recent call last):
      File "synthesize.py", line 242, in <module>
        model = get_model(args, configs, device, train=False)
      File "/home/azureuser/aditya_workspace/stylespeech_keonlee_naive/utils/model.py", line 21, in get_model
        model.load_state_dict(ckpt["model"], strict=True)
      File "/home/azureuser/aditya_workspace/keonlee/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1223, in load_state_dict
        raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
    RuntimeError: Error(s) in loading state_dict for StyleSpeech:
    	Missing key(s) in state_dict: "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.0.fc_layer.fc_layer.linear.weight_v", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_orig", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_u", "D_t.mel_linear.1.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.0.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.1.fc_layer.fc_layer.linear.weight_v", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_orig", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_u", "D_t.discriminator_stack.2.fc_layer.fc_layer.linear.weight_v", "D_t.final_linear.fc_layer.fc_layer.linear.weight_orig", "D_t.final_linear.fc_layer.fc_layer.linear.weight", "D_t.final_linear.fc_layer.fc_layer.linear.weight_u", "D_t.final_linear.fc_layer.fc_layer.linear.weight_orig", "D_t.final_linear.fc_layer.fc_layer.linear.weight_u", "D_t.final_linear.fc_layer.fc_layer.linear.weight_v", "D_s.fc_1.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_1.fc_layer.fc_layer.linear.weight", "D_s.fc_1.fc_layer.fc_layer.linear.weight_u", "D_s.fc_1.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_1.fc_layer.fc_layer.linear.weight_u", "D_s.fc_1.fc_layer.fc_layer.linear.weight_v", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.0.fc_layer.fc_layer.linear.weight_v", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_orig", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_u", "D_s.spectral_stack.1.fc_layer.fc_layer.linear.weight_v", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.bias", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.0.conv_layer.conv_layer.conv.weight_v", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.bias", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_orig", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_u", "D_s.temporal_stack.1.conv_layer.conv_layer.conv.weight_v", "D_s.slf_attn_stack.0.w_qs.linear.weight_orig", "D_s.slf_attn_stack.0.w_qs.linear.weight", "D_s.slf_attn_stack.0.w_qs.linear.weight_u", "D_s.slf_attn_stack.0.w_qs.linear.weight_orig", "D_s.slf_attn_stack.0.w_qs.linear.weight_u", "D_s.slf_attn_stack.0.w_qs.linear.weight_v", "D_s.slf_attn_stack.0.w_ks.linear.weight_orig", "D_s.slf_attn_stack.0.w_ks.linear.weight", "D_s.slf_attn_stack.0.w_ks.linear.weight_u", "D_s.slf_attn_stack.0.w_ks.linear.weight_orig", "D_s.slf_attn_stack.0.w_ks.linear.weight_u", "D_s.slf_attn_stack.0.w_ks.linear.weight_v", "D_s.slf_attn_stack.0.w_vs.linear.weight_orig", "D_s.slf_attn_stack.0.w_vs.linear.weight", "D_s.slf_attn_stack.0.w_vs.linear.weight_u", "D_s.slf_attn_stack.0.w_vs.linear.weight_orig", "D_s.slf_attn_stack.0.w_vs.linear.weight_u", "D_s.slf_attn_stack.0.w_vs.linear.weight_v", "D_s.slf_attn_stack.0.layer_norm.weight", "D_s.slf_attn_stack.0.layer_norm.bias", "D_s.slf_attn_stack.0.fc.linear.weight_orig", "D_s.slf_attn_stack.0.fc.linear.weight", "D_s.slf_attn_stack.0.fc.linear.weight_u", "D_s.slf_attn_stack.0.fc.linear.weight_orig", "D_s.slf_attn_stack.0.fc.linear.weight_u", "D_s.slf_attn_stack.0.fc.linear.weight_v", "D_s.fc_2.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_2.fc_layer.fc_layer.linear.weight", "D_s.fc_2.fc_layer.fc_layer.linear.weight_u", "D_s.fc_2.fc_layer.fc_layer.linear.weight_orig", "D_s.fc_2.fc_layer.fc_layer.linear.weight_u", "D_s.fc_2.fc_layer.fc_layer.linear.weight_v", "D_s.V.fc_layer.fc_layer.linear.weight", "D_s.w_b_0.fc_layer.fc_layer.linear.weight", "D_s.w_b_0.fc_layer.fc_layer.linear.bias", "style_prototype.weight".
    	Unexpected key(s) in state_dict: "speaker_emb.weight".
    

    Can you help with this, seems like the pre-trained weights are old and do not conform to the current architecture.

    opened by sirius0503 1
  • time dimension doesn't match

    time dimension doesn't match

    ^MTraining: 0%| | 0/200000 [00:00<?, ?it/s] ^MEpoch 1: 0%| | 0/454 [00:00<?, ?it/s]^[[APrepare training ... Number of StyleSpeech Parameters: 28197333 Removing weight norm... Traceback (most recent call last): File "train.py", line 224, in main(args, configs) File "train.py", line 98, in main output = (None, None, model((batch[2:-5]))) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/parallel/data_parallel.py", line 165, in forward return self.module(*inputs[0], **kwargs[0]) File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/StyleSpeech.py", line 144, in forward d_control, File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/StyleSpeech.py", line 88, in G d_control, File "/share/mini1/sw/std/python/anaconda3-2019.07/v3.7/envs/StyleSpeech/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/share/mini1/res/t/vc/studio/timap-en/libritts/StyleSpeech/model/modules.py", line 417, in forward x = x + pitch_embedding RuntimeError: The size of tensor a (132) must match the size of tensor b (130) at non-singleton dimension 1 ^MTraining: 0%| | 1/200000 [00:02<166:02:12, 2.99s/it]

    I think it might because of mfa I used. As mentioned in https://montreal-forced-aligner.readthedocs.io/en/latest/getting_started.html, I installed mfa through conda.

    Then I used mfa align raw_data/LibriTTS lexicon/librispeech-lexicon.txt english preprocessed_data/LibriTTS instead of the way you showed. But I can't find a way to run it as the way you showed, because I installed mfa through conda.

    opened by MingjieChen 24
Releases(v1.0.2)
Owner
Keon Lee
Expressive Speech Synthesis | Conversational AI | Open-domain Dialog | NLP | Generative Models | Empathic Computing | HCI
Keon Lee
Hostapd-mac-tod-acl - Setup a hostapd AP with MAC ToD ACL

A brief explanation This script provides a quick way to setup a Time-of-day (Tod

2 Feb 03, 2022
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...

Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want

deepset 6.4k Jan 09, 2023
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Khalid Saifullah 37 Sep 05, 2022
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 902 Jan 06, 2023
A website which allows you to play with the GPT-2 transformer

transformers A website which allows you to play with the GPT-2 model Built with ❤️ by raphtlw Table of contents Model Setup About Contributors Model T

raphtlw 2 Jan 27, 2022
SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples

SNCSE SNCSE: Contrastive Learning for Unsupervised Sentence Embedding with Soft Negative Samples This is the repository for SNCSE. SNCSE aims to allev

Sense-GVT 59 Jan 02, 2023
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
Generate vector graphics from a textual caption

VectorAscent: Generate vector graphics from a textual description Example "a painting of an evergreen tree" python text_to_painting.py --prompt "a pai

Ajay Jain 97 Dec 15, 2022
Milaan Parmar / Милан пармар / _米兰 帕尔马 170 Dec 13, 2022
Mlcode - Continuous ML API Integrations

mlcode Basic APIs for ML applications. Django REST Application Contains REST API

Sujith S 1 Jan 01, 2022
Code for evaluating Japanese pretrained models provided by NTT Ltd.

japanese-dialog-transformers 日本語の説明文はこちら This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialo

NTT Communication Science Laboratories 216 Dec 22, 2022
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets

T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets (product titles, images, comments, etc.).

55 Nov 22, 2022