KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

Overview

KSAI Lite

English | 简体中文

Documentation Status Release License

KSAI Lite是一个轻量级、灵活性强、高性能且易于扩展的深度学习推理框架,底层基于tensorflow lite,定位支持包括移动端、嵌入式以及服务器端在内的多硬件平台。

当前KSAI Lite已经应用在金山office内部业务中,并逐步支持金山企业的生产任务和众多外部用户。

快速入门

使用KSAI Lite,只需几个简单的步骤,就可以把模型部署到多种终端设备中,运行高性能的推理任务,使用流程如下所示:

一. 准备模型

KSAI Lite框架直接支持模型结构为tflite模型。 如果您手中的模型是由诸如Caffe、MXNet、PyTorch等框架产出的,那么您可以使用工具将模型转换为tflite格式。

二. 模型优化

KSAI Lite框架基于底层tensorflow lite的优化方法,拥有优秀的加速、优化策略及实现,包含量化、子图融合、Kernel优选等优化手段。优化后的模型更轻量级,耗费资源更少,并且执行速度也更快。

三. 下载或编译

KSAI Lite提供了多平台的官方Release预测库下载,我们优先推荐您直接下载 KSAI Lite预编译库,包括了Linux-X64, Linux-ARM, Linux-MIPS64以及Windows-X64索引库Windows-X64动态链接库。 您也可以根据目标平台选择对应的源码编译方法。KSAI Lite 提供了源码编译脚本,位于 tools/目录下,只需要按照docs/目录下的准备环境说明文档environment setup.md搭建好环境然后切到tools/目录调用编译脚本两个步骤即可一键编译得到目标平台的KSAI Lite预测库。

四. 预测示例

KSAI Lite提供了C++ API,并且提供了相应API的完整使用示例: 目录为tensorflow/lite/examples/reg_test/reg_test.cc 您可以参考示例快速了解使用方法,并集成到您自己的项目中去,也可以参考KSAI-Toolkits该项目。

主要特性

  • 多硬件支持
    • KSAI Lite架构已经验证和完整支持从 Mobile 到 Server 多种硬件平台,包括 intel X86、ARM、华为 Kunpeng 920、龙芯Loongson-3A R3、兆芯C4600、Phytium FT1500a等,且正在不断增加更多新硬件支持。
  • 轻量级部署
    • KSAI Lite在设计上对图优化模块和执行引擎实现了良好的解耦拆分,移动端可以直接部署执行阶段,无任何第三方依赖。
  • 高性能
    • 极致的 ARM及X86 CPU 性能优化:针对不同微架构特点实现kernel的定制,最大发挥计算性能,在主流模型上展现出领先的速度优势。
  • 多模型多算子
    • KSAI Lite和tensorflow训练框架的OP对齐,提供广泛的模型支持能力。
    • 目前已对视觉类模型做到了较为充分的支持,覆盖分类、检测和识别,包含了特色的OCR模型的支持,并在不断丰富中。
  • 强大的图分析和优化能力
    • 不同于常规的移动端预测引擎基于 Python 脚本工具转化模型, Lite 架构上有完整基于 C++ 开发的 IR 及相应 Pass 集合,以支持操作融合,计算剪枝,存储优化,量化计算等多类计算图优化。

持续集成

System X86 Linux ARM Linux MIPS64 Linux windows
CPU(32bit) Build Status - - Build Status
CPU(64bit) Build Status - - Build Status
高通骁龙845 - Build Status - -
华为kunpeng920 - Build Status - -
龙芯Loongson-3A - - Build Status -
兆芯C4600 - Build Status - -
Phytium FT1500a - Build Status - -

交流与反馈

版权和许可证

KSAI-Lite由Apache-2.0 license提供

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
CCPD: a diverse and well-annotated dataset for license plate detection and recognition

CCPD (Chinese City Parking Dataset, ECCV) UPdate on 10/03/2019. CCPD Dataset is now updated. We are confident that images in subsets of CCPD is much m

detectRecog 1.8k Dec 30, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
Sequential GCN for Active Learning

Sequential GCN for Active Learning Please cite if using the code: Link to paper. Requirements: python 3.6+ torch 1.0+ pip libraries: tqdm, sklearn, sc

45 Dec 26, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022