Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Overview

Maths from examples - Learning advanced mathematical computations from examples

This is the source code and data sets relevant to the paper Learning advanced mathematical computations from examples, by Amaury hayat, François Charton and Guillaume Lample, published by ICLR 2021.

We provide code for

  • data generation
  • model training
  • model evaluation

We also provide

  • 7 datasets
  • 7 pretrained models

Dependencies

  • Python (3.8+)
  • Numpy (1.16.4+)
  • Sympy (1.4+)
  • Pytorch (1.7.1+)
  • Control library (0.8.4, from conda-forge)
  • CUDA (i.e. a NVIDIA chip) if you intend to use a GPU
  • Apex for half-precision training

Important notes

Learning with and without GPU

All the code can run on CPU only (set parameter --cpu to true). Data generation is to be done on CPU only. Model training and model evaluation can be done on CPU, but training will be extremely slow. To train or evaluate with a GPU, you need a CUDA-enabled GPU (i.e. a NVIDIA chip).

We support:

  • Half-Precision (with NVIDIA Apex library): set parameters --fp16 true --amp 2, to disable, set --fp16 false --amp -1
  • Multi-GPU training: to run an experiment with several GPU on a unique machine, use
export NGPU=8; python -m torch.distributed.launch --nproc_per_node=$NGPU train.py  # parameters for your experiment
  • Multi-node training: using GPU on different machines is handled by SLURM (see code)

On GPU with limited video memory, you will need to reduce memory usage by adjusting --batch_size. Try to set it to the largest value that will fit in your CUDA memory. Since model optimization is performed at the end of each minibatch, smaller batch sizes will gratly slow learning. You can compensate for this by increasing --accumulate_gradient, which controls the number of mini-batches the model sees before optimizing the model.

Dump paths and experiment names

All paths should be absolute : --dump_path ./mydump might not work, --dump_path c:/Users/me/mydump should be fine. The directories where your datasets, models, and logfiles will be generated are constructed from the parameters --dump_path --exp_name and --exp_id, as {dump_path}/{exp_name}/{exp_id}/, if you do not specify an exp_id, a random unique name will be created for you. If you reuse the same dump_path/exp/name/exp_id, generation or training will resume there (adding new examples, or loading the previous model for training).

All results will be logged in file train.logof the experiment path.

All models and datasets can be downloaded from https://dl.fbaipublicfiles.com/MathsFromExamples/. By convention, in all code examples, datasets and models use the path /checkpoint/fcharton/dumped/. You will need to adjust this to the correct path on your local machine.

Data sets

We provide 7 datasets, all can be found on https://dl.fbaipublicfiles.com/MathsFromExamples/data/ as tar.gz archives.

Stability : balanced sample of systems of degree 2 to 5 (50% stable), predicting speed of convergence at 0.01 (largest real part of eigenvalue):

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_stability_balanced.tar.gz

  • ddss_stability_balanced.prefix_counts.train : 25,544,975 systems
  • ddss_stability_balanced.prefix_counts.valid.final : 10,000 systems
  • ddss_stability_balanced.prefix_counts.test.final : 10,000 systems

Stability : random sample of systems of degree 2 to 6, predicting speed of convergence at 0.01

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_stability.tar.gz

  • ddss_stability.prefix_counts.train : 92,994,423 systems
  • ddss_stability.prefix_counts.valid.final : 10,000 systems
  • ddss_stability.prefix_counts.test.final : 10,000 systems

Controllability: balanced sample of systems of degree 3 to 5 (50% stable), predicting controllability (a binary value)

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_control.tar.gz

  • ddss_control.prefix_counts.train : 26,577,934 systems
  • ddss_control.prefix_counts.valid.final : 10,000 systems
  • ddss_control.prefix_counts.test.final : 10,000 systems

Controllability: sample of controllable systems of degree 3 to 6, predicting a control matrix

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_gram.tar.gz

  • ddss_gram.prefix_counts.train : 53,680,092 systems
  • ddss_gram.prefix_counts.valid.final : 10,000 systems
  • ddss_gram.prefix_counts.test.final : 10,000 systems

Non autonomous controllability: random sample (82.4% controllable) of systems of degree 2 and 3, predicting controllability

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_control_t.tar.gz

  • ddss_control_t.prefix_counts.train : 65,754,655 systems
  • ddss_control_t.prefix_counts.valid.final : 10,000 systems
  • ddss_control_t.prefix_counts.test.final : 10,000 systems

Non autonomous controllability: balanced sample (50/50) of systems of degree 2 and 3, predicting controllability

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_control_t_bal.tar.gz

  • ddss_control_t_bal.prefix_counts.train : 23,125,016 systems
  • ddss_control_t_bal.prefix_counts.valid.final : 10,000 systems
  • ddss_control_t_bal.prefix_counts.test.final : 10,000 systems

Partial differential equations with initial conditions, predicting existence of a solution and behavior at infinity

in archive https://dl.fbaipublicfiles.com/MathsFromExamples/data/ddss_fourier.tar.gz

  • ddss_fourier.prefix_counts.train : 52,285,760 systems
  • ddss_fourier.prefix_counts.valid.final : 10,000 systems
  • ddss_fourier.prefix_counts.test.final : 10,000 systems

Training a model from a dataset

python train.py 

# experiment parameters 
# the full path of this experiment will be /checkpoint/fcharton/dumped/ddss_ctrl/exp_1
--dump_path '/checkpoint/fcharton/dumped'   # path for log files and saved models, avoid ./ and other non absolute paths
--exp_name ddss_ctrl                        # name
--exp_id exp_1                              # id : randomly generated if absent

# dataset
--export_data false
--tasks ode_control         # set to `ode_convergence_speed`, `ode_control` or `fourier_cond_init`
# '{tasks},{train_file_path},{valid_file_path},{test_file_path}'
--reload_data 'ode_control,/checkpoint/fcharton/dumped/ddss_gen_ctrl/ddss_control.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_ctrl/ddss_control.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_ctrl/ddss_control.prefix_counts.test.final' 
--reload_size 40000000      # nr of records to load
--max_len 512               # max length of input or output

# model parameters
--emb_dim 512 
--n_enc_layers 6 
--n_dec_layers 6 
--n_heads 8 
--optimizer 'adam_inverse_sqrt,warmup_updates=10000,lr=0.0001,weight_decay=0.01'

# training parameters
--batch_size 256        # minibatch size, reduce to fit available GPU memory
--epoch_size 300000     # how often evaluation on validation set is performed
--beam_eval 0           # use beam search for evaluation (set to 1 for quantitative tasks)
--eval_size 10000       # size of validation set
--batch_size_eval 256   # batchs for validation, reduce to adjust memory

# validation metrics
# valid_{task}_acc or valid_{task}_beam_acc depending on whether beam search is used  
--validation_metrics valid_ode_control_acc 
# stop after no increase in 20 epochs
--stopping_criterion 'valid_ode_control_acc,20' 

Generating your own data sets

To generate a dataset, use the parameters

python train.py --cpu true --export_data true  --reload_data '' --env_base_seed -1  --num_workers 20 --task # task specific parameters 

Generated data (exported as sequences of tokens) will be written in file data.prefix in the dump path of the experiment. To be used for training, these files need to be post-processed as shown in the examples below.

IMPORTANT NOTE : Data generation is very slow, and sometimes results in errors that cause the program to abort and need to be relaunched. Typical generating speeds are one or a few systems per second. Whereas one might want to use this code to experiment with data generation, creating datasets on which our models can be trained (10 million examples or more) requires a lot of computing power (typically 200-300 experiments, with 20 CPU each, running for several days)

Important parameters for data generation are :

  • --tasks : ode_convergence_speed, ode_control or fourier_cond_init
  • --cpu : always set to true
  • --num_workers : set to the number of cores you can use
  • --env_base_seed : set to -1
  • --min_degree and --max_degree : bounds for the size of the systems generated
    For more details, see file 'envs/ode.py' in the source code

Predicting stability - balanced sample (50% stable), systems of degree 2 to 5

# Generation command
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 2 --skip_zero_gradient true --positive false --nonnull true --prob_int 0.3 --min_degree 2 --max_degree 5 --eval_value 0.01 --prob_positive 0.5 --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks ode_convergence_speed --env_base_seed -1 --exp_name ddss_gen_stab_bal

# Post-processing
# assemble raw data file from prefixes
cat */data.prefix \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_stability_balanced.prefix_counts

# create train, valid and test samples
python ~/MathsFromExamples/split_data.py ddss_stability_balanced.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_stability_balanced.prefix_counts.train ddss_stability_balanced.prefix_counts.valid > ddss_stability_balanced.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_stability_balanced.prefix_counts.train ddss_stability_balanced.prefix_counts.test > ddss_stability_balanced.prefix_counts.test.final

Predicting stability - random sample, systems of degree 2 to 6

# Generation command
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 2 --skip_zero_gradient true --positive false --nonnull true --prob_int 0.3 --min_degree 2 --max_degree 6 --eval_value 0.01 --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks ode_convergence_speed --env_base_seed -1 --exp_name ddss_gen_stab

# assemble raw data file from prefixes
cat */data.prefix \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_stability.prefix_counts
 
# create train, valid and test samples 
python ~/MathsFromExamples/split_data.py ddss_stability.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_stability.prefix_counts.train ddss_stability.prefix_counts.valid > ddss_stability.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_stability.prefix_counts.train ddss_stability.prefix_counts.test > ddss_stability.prefix_counts.test.final

Predicting controllability - balanced sample, systems of degree 3 to 6

# generation command 
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 3 --skip_zero_gradient true --positive false --nonnull true --prob_int 0.3 --min_degree 3 --max_degree 6 --eval_value 0.9 --allow_complex false --jacobian_precision 3 --qualitative true --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks ode_control --env_base_seed -1 --exp_name ddss_gen_ctrl

# assemble non controllable cases from prefixes
cat */data.prefix \
| grep '0$' \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_control.prefix_counts.0

# count them
wc -l ddss_control.prefix_counts.0   # 13,298,967

# assemble controllable cases from prefixes
cat */data.prefix \
| grep '1$' \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
| head -n 13298967 > ddss_control.prefix_counts.1

# assemble prefix_counts
cat ddss_control.prefix_counts.0 ddss_control.prefix_counts.1 | shuf > ddss_control.prefix_counts

# create train, valid and test samples
python ~/MathsFromExamples/split_data.py ddss_control.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_control.prefix_counts.train ddss_control.prefix_counts.valid > ddss_control.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_control.prefix_counts.train ddss_control.prefix_counts.test > ddss_control.prefix_counts.test.final

Predicting non autonomous controllability: unbalanced sample, systems of 2 to 3 equations

# generation command 
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 3 --skip_zero_gradient true --positive false --nonnull true --prob_int 0.3 --min_degree 2 --max_degree 3 --eval_value 0.5 --allow_complex false --jacobian_precision 3 --qualitative false --tau 1 --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks ode_control --env_base_seed -1 --exp_name ddss_gen_ctrl_t

# assemble raw data file from prefixes
cat */data.prefix \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_control_t.prefix_counts

# create train, valid and test samples
python ~/MathsFromExamples/split_data.py ddss_control_t.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_control_t.prefix_counts.train ddss_control_t.prefix_counts.valid > ddss_control_t.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_control_t.prefix_counts.train ddss_control_t.prefix_counts.test > ddss_control_t.prefix_counts.test.final

Predicting non autonomous controllability: balanced sample, systems of 2 to 3 equations

# generation command 
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 3 --skip_zero_gradient true --positive false --nonnull true --prob_int 0.3 --min_degree 2 --max_degree 3 --eval_value 0.5 --allow_complex false --jacobian_precision 3 --qualitative false --tau 1 --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks ode_control --env_base_seed -1 --exp_name ddss_gen_ctrl_t

# assemble non controllable cases from prefixes
cat */data.prefix \
| grep '0$' \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_control_t.prefix_counts.0

# count them
wc -l ddss_control_t.prefix_counts.0   # 11,572,508

# assemble controllable cases from prefixes
cat */data.prefix \
| grep '1$' \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
| head -n 11572508 > ddss_control_t.prefix_counts.1

# assemble prefix_counts
cat ddss_control_t.prefix_counts.0 ddss_control_t.prefix_counts.1 | shuf > ddss_control_t_bal.prefix_counts

# create train, valid and test samples
python ~/MathsFromExamples/split_data.py ddss_control_t_bal.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_control_t_bal.prefix_counts.train ddss_control_t_bal.prefix_counts.valid > ddss_control_t_bal.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_control_t_bal.prefix_counts.train ddss_control_t_bal.prefix_counts.test > ddss_control_t_bal.prefix_counts.test.final

Predicting control matrices - sample of controllable systems, of degree 3 to 6

# generation command
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 3 --skip_zero_gradient true --positive false --nonnull true --prob_int 0.3 --min_degree 3 --max_degree 6 --eval_value 0.5 --allow_complex false --jacobian_precision 2 --qualitative false --predict_gramian true --prob_positive 1.0 --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks ode_control --env_base_seed -1 --exp_name ddss_gen_gram

# assemble raw data file from prefixes
cat */data.prefix \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_gram.prefix_counts
 
# create train, valid and test samples 
python ~/MathsFromExamples/split_data.py ddss_gram.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_gram.prefix_counts.train ddss_gram.prefix_counts.valid > ddss_gram.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_gram.prefix_counts.train ddss_gram.prefix_counts.test > ddss_gram.prefix_counts.test.final

Predicting the existence of solutions of partial differential equations

# generation command
python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --emb_dim 128 --n_enc_layers 2 --n_dec_layers 2 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --batch_size 32 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --accumulate_gradients 1 --env_name ode --max_int 10 --precision 2 --jacobian_precision 2 --positive false --nonnull true --allow_complex false --predict_bounds true --skip_zero_gradient true --prob_int 0.3 --min_degree 2 --max_degree 6 --eval_value 0.01 --prob_positive -1.0 --num_workers 20 --cpu true --stopping_criterion '' --validation_metrics '' --export_data true --reload_data '' --tasks fourier_cond_init --env_base_seed -1 --exp_name ddss_gen_fourier

# assemble raw data file from prefixes
cat */data.prefix \
| awk 'BEGIN{PROCINFO["sorted_in"]="@val_num_desc"}{c[$0]++}END{for (i in c) printf("%i|%s\n",c[i],i)}' \
> ddss_fourier.prefix_counts
 
# create train, valid and test samples 
python ~/MathsFromExamples/split_data.py ddss_fourier.prefix_counts 10000

# check valid and test for duplicates and remove them
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_fourier.prefix_counts.train ddss_fourier.prefix_counts.valid > ddss_fourier.prefix_counts.valid.final
awk -F"[|\t]" 'NR==FNR { lines[$2]=1; next } !($2 in lines)' ddss_fourier.prefix_counts.train ddss_fourier.prefix_counts.test > ddss_fourier.prefix_counts.test.final

Pre-trained models

We provide 7 pretrained models for the various problems. Below are the links, the dataset they were trained on, and the parameters used, and the performance on the validation set (valid.final in the same directory, 10 000 held-out examples).

Predicting stability (qualitative)

python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 true --amp 2 --accumulate_gradients 1 --emb_dim 512 --batch_size 128 --batch_size_eval 256 --n_enc_layers 6 --n_dec_layers 6 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --positive false --nonnull true --qualitative true --skip_zero_gradient true --prob_int 0.3 --max_degree 5 --min_degree 2 --eval_verbose 0 --beam_eval 0 --eval_size 10000 --tasks ode_convergence_speed --reload_data 'ode_convergence_speed,/checkpoint/fcharton/dumped/ddss_gen_stab_bal/ddss_stability_balanced.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_stab_bal/ddss_stability_balanced.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_stab_bal/ddss_stability_balanced.prefix_counts.test.final' --reload_size 40000000 --stopping_criterion 'valid_ode_convergence_speed_acc,40' --validation_metrics valid_ode_convergence_speed_acc --env_base_seed -1 --exp_name ddss_stab_quali

Stability: computing convergence speed

python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 true --amp 2 --accumulate_gradients 1 --emb_dim 1024 --batch_size 128 --batch_size_eval 256 --n_enc_layers 8 --n_dec_layers 8 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --optimizer 'adam_inverse_sqrt,warmup_updates=10000,lr=0.0001,weight_decay=0.01' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --positive false --nonnull true --skip_zero_gradient true --prob_int 0.3 --max_degree 6 --min_degree 2 --eval_verbose 0 --beam_eval 1 --eval_size 10000 --tasks ode_convergence_speed --reload_data 'ode_convergence_speed,/checkpoint/fcharton/dumped/ddss_gen_stab/ddss_stability.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_stab/ddss_stability.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_stab/ddss_stability.prefix_counts.test.final' --reload_size 40000000 --stopping_criterion 'valid_ode_convergence_speed_beam_acc,40' --validation_metrics valid_ode_convergence_speed_beam_acc --env_base_seed -1 --exp_name ddss_stab_quanti

Predicting autonomous controllability

 python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 true --amp 2 --accumulate_gradients 1 --emb_dim 512 --batch_size 256 --batch_size_eval 256 --n_enc_layers 6 --n_dec_layers 6 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --optimizer 'adam_inverse_sqrt,warmup_updates=10000,lr=0.0001,weight_decay=0.01' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --positive false --nonnull true --skip_zero_gradient true --prob_int 0.3 --max_degree 6 --min_degree 3 --eval_value 0.9 --qualitative true --eval_verbose 0 --beam_eval 0 --eval_size 10000 --tasks ode_control --reload_data 'ode_control,/checkpoint/fcharton/dumped/ddss_gen_ctrl/ddss_control.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_ctrl/ddss_control.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_ctrl/ddss_control.prefix_counts.test.final' --reload_size 40000000 --stopping_criterion 'valid_ode_control_acc,20' --validation_metrics valid_ode_control_acc --env_base_seed -1 --exp_name ddss_ctrl

Predicting non-autonomous controllability

python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 true --amp 2 --accumulate_gradients 1 --emb_dim 512 --batch_size 256 --batch_size_eval 256 --n_enc_layers 6 --n_dec_layers 6 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --optimizer 'adam_inverse_sqrt,warmup_updates=10000,lr=0.0001,weight_decay=0.01' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --positive false --nonnull true --skip_zero_gradient true --prob_int 0.3 --max_degree 3 --min_degree 2 --eval_value 0.5 --qualitative false --tau 1 --eval_verbose 0 --beam_eval 0 --eval_size 10000 --tasks ode_control --reload_data 'ode_control,/checkpoint/fcharton/dumped/ddss_gen_ctrl_t/ddss_control_t.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_ctrl_t/ddss_control_t.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_ctrl_t/ddss_control_t.prefix_counts.test.final' --reload_size 40000000 --stopping_criterion 'valid_ode_control_acc,60' --validation_metrics valid_ode_control_acc --env_base_seed -1 --exp_name ddss_ctrl_t

Computing control matrices: predicting solution up to 10%

python /private/home/fcharton/workdir/ddss_gram/2021_03_18_12_05_11/train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 true --amp 2 --accumulate_gradients 1 --emb_dim 512 --batch_size 128 --batch_size_eval 128 --n_enc_layers 6 --n_dec_layers 6 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --positive false --nonnull true --skip_zero_gradient true --prob_int 0.3 --max_degree 6 --min_degree 3 --eval_value 0.5 --predict_gramian true --euclidian_metric true --auxiliary_task false --eval_verbose 0 --beam_eval 1 --eval_size 10000 --tasks ode_control --reload_data 'ode_control,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.test.final' --reload_size 50000000 --stopping_criterion 'valid_ode_control_beam_acc,40' --validation_metrics valid_ode_control_beam_acc --env_base_seed -1 --exp_name ddss_gram

Computing control matrices: predicting a correct mathematical solution

python /private/home/fcharton/workdir/ddss_gram/2021_03_09_12_09_38/train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 true --amp 2 --accumulate_gradients 1 --emb_dim 512 --batch_size 128 --batch_size_eval 128 --n_enc_layers 6 --n_dec_layers 6 --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 512 --optimizer 'adam,lr=0.0001' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --positive false --nonnull true --skip_zero_gradient true --prob_int 0.3 --max_degree 6 --min_degree 3 --eval_value 0.5 --predict_gramian true --euclidian_metric false --auxiliary_task false --eval_verbose 0 --beam_eval 1 --eval_size 10000 --tasks ode_control --reload_data 'ode_control,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.valid.final,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.test.final' --reload_size 40000000 --stopping_criterion 'valid_ode_control_beam_acc,20' --validation_metrics valid_ode_control_beam_acc --env_base_seed -1 --exp_name ddss_gram

Predicting the existence of solutions of partial differential equations

python train.py --dump_path '/checkpoint/fcharton/dumped' --save_periodic 0 --fp16 false --amp -1 --accumulate_gradients 1 --emb_dim 512 --n_enc_layers 8 --n_dec_layers 8 --batch_size 64 --batch_size_eval 64 --eval_size 10000 --predict_jacobian false --n_heads 8 --dropout 0 --attention_dropout 0 --share_inout_emb true --sinusoidal_embeddings false --max_len 1024 --optimizer 'adam_inverse_sqrt,warmup_updates=10000,lr=0.0001,weight_decay=0.01' --clip_grad_norm 5 --epoch_size 300000 --max_epoch 100000 --num_workers 1 --export_data false --env_name ode --max_int 10 --precision 3 --jacobian_precision 1 --positive false --nonnull true --prob_int '0.3' --max_degree 6 --eval_value 0.5 --allow_complex false --predict_bounds true --skip_zero_gradient true --eval_verbose 0 --beam_eval 0 --tasks fourier_cond_init --reload_data 'fourier_cond_init,/checkpoint/fcharton/dumped/ddss_gen_fourier/ddss_fourier.prefix_counts.train,/checkpoint/fcharton/dumped/ddss_gen_fourier/ddss_fourier.prefix_counts.valid,/checkpoint/fcharton/dumped/ddss_gen_fourier/ddss_fourier.prefix_counts.test' --reload_size 40000000 --stopping_criterion 'valid_fourier_cond_init_acc,20' --validation_metrics valid_fourier_cond_init_acc --env_base_seed -1 --exp_name ddss_fourier

Evaluating trained models

To evaluate over a trained model model.pth on a specific test set test.data, run the model with the same parameters as training, setting --eval_only trueand --reload_model to the path to your model (e.g. --reload_model /model_path/model.pth), and setting the second file --reload_datato your test data (e.g. --reload_data 'ode_control,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.train,/MYPATH/test.data,/checkpoint/fcharton/dumped/ddss_gen_gram/ddss_gram.prefix_counts.test.final'). Set --eval_sizeto the size of your dataset. At present, only the validation dataset is used for evaluation, but you can change this by toggling comments on lines 367 and 368 of file evaluator.py.

Citation

This code is released under a Creative Commons License, see LICENCE file for more details. If you use this code, consider citing

@misc{charton2021learning, title={Learning advanced mathematical computations from examples}, author={François Charton and Amaury Hayat and Guillaume Lample}, year={2021}, eprint={2006.06462}, archivePrefix={arXiv}, primaryClass={cs.LG} }

Owner
Facebook Research
Facebook Research
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022