(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

Related tags

Deep LearningDARS
Overview

DARS

Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021 (oral).

framework

Authors: Ruifei He*, Jihan Yang*, Xiaojuan Qi (*equal contribution)

arxiv

Usage

Install

  • Clone this repo:
git clone https://https://github.com/CVMI-Lab/DARS.git
cd DARS
  • Create a conda virtual environment and activate it:
conda create -n DARS python=3.7 -y
conda activate DARS
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
  • Install Apex:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • Install other requirements:
pip install opencv-python==4.4.0.46 tensorboardX pyyaml

Initialization weights

For PSPNet50, we follow PyTorch Semantic Segmentation and use Imagenet pre-trained weights, which could be found here.

For Deeplabv2, we follow the exact same settings in semisup-semseg, AdvSemiSeg and use Imagenet pre-trained weights.

mkdir initmodel  
# Put the initialization weights under this folder. 
# You can check model/pspnet.py or model/deeplabv2.py.

Data preparation

mkdir dataset  # put the datasets under this folder. You can verify the data path in config files.

Cityscapes

Download the dataset from the Cityscapes dataset server(Link). Download the files named 'gtFine_trainvaltest.zip', 'leftImg8bit_trainvaltest.zip' and extract in dataset/cityscapes/.

For data split, we randomly split the 2975 training samples into 1/8, 7/8 and 1/4 and 3/4. The generated lists are provided in the data_split folder.

Note that since we define an epoch as going through all the samples in the unlabeled data and a batch consists of half labeled and half unlabeled, we repeat the shorter list (labeled list) to the length of the corresponding unlabeled list for convenience.

You can generate random split lists by yourself or use the ones that we provided. You should put them under dataset/cityscapes/list/.

PASCAL VOC 2012

The PASCAL VOC 2012 dataset we used is the commonly used 10582 training set version. If you are unfamiliar with it, please refer to this blog.

For data split, we use the official 1464 training images as labeled data and the 9k augmented set as unlabeled data. We also repeat the labeled list to match that of the unlabeled list.

You should also put the lists under dataset/voc2012/list/.

Training

The config files are located within config folder.

For PSPNet50, crop size 713 requires at least 4*16G GPUs or 8*10G GPUs, and crop size 361 requires at least 1*16G GPU or 2*10G GPUs.

For Deeplabv2, crop size 361 requires at least 1*16G GPU or 2*10G GPUs.

Please adjust the GPU settings in the config files ('train_gpu' and 'test_gpu') according to your machine setup.

The generation of pseudo labels would require 200G usage of disk space, reducing to only 600M after they are generated.

All training scripts for pspnet50 and deeplabv2 are in the tool/scripts folder. For example, to train PSPNet50 for the Cityscapes 1/8 split setting with crop size 713x713, use the following command:

sh tool/scripts/train_psp50_cityscapes_split8_crop713.sh

Acknowledgement

Our code is largely based on PyTorch Semantic Segmentation, and we thank the authors for their wonderful implementation.

We also thank the open-source code from semisup-semseg, AdvSemiSeg, DST-CBC.

Citation

If you find this project useful in your research, please consider cite:

@inproceedings{he2021re,
  title={Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation},
  author={He, Ruifei and Yang, Jihan and Qi, Xiaojuan},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={6930--6940},
  year={2021}
}
Owner
CVMI Lab
CVMI Lab
LBK 35 Dec 26, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022