HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

Related tags

Deep Learninghalo
Overview

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

Oral Presentation, 3DV 2021

Korrawe Karunratanakul, Adrian Spurr, Zicong Fan, Otmar Hilliges, Siyu Tang
ETH Zurich

halo_teaser

report report

Video: Youtube

Abstract

We present Hand ArticuLated Occupancy (HALO), a novel representation of articulated hands that bridges the advantages of 3D keypoints and neural implicit surfaces and can be used in end-to-end trainable architectures. Unlike existing statistical parametric hand models (e.g.~MANO), HALO directly leverages the 3D joint skeleton as input and produces a neural occupancy volume representing the posed hand surface. The key benefits of HALO are (1) it is driven by 3D keypoints, which have benefits in terms of accuracy and are easier to learn for neural networks than the latent hand-model parameters; (2) it provides a differentiable volumetric occupancy representation of the posed hand; (3) it can be trained end-to-end, allowing the formulation of losses on the hand surface that benefit the learning of 3D keypoints. We demonstrate the applicability of HALO to the task of conditional generation of hands that grasp 3D objects. The differentiable nature of HALO is shown to improve the quality of the synthesized hands both in terms of physical plausibility and user preference.

Updates

  • December 1, 2021: Initial release for version 0.01 with demo.

Running the code

Dependencies

The easiest way to run the code is to use conda. The code is tested on Ubuntu 18.04.

Implicit surface from keypoints

halo_hand To try a demo which produces an implicit hand surface from the input keypoints, run:

cd halo
python demo_kps_to_hand.py

The demo will run the marching cubes algorithm and render each image in the animation above sequentially. The output images are in the output folder. The provided sample sequence are interpolations beetween 17 randomly sampled poses from the unseen HO3D dataset .

Dataset

  • The HALO-base model is trained using Youtube3D hand dataset. We only use the hand mesh ground truth without the images and videos. We provide the preprocessed data in the evaluation section.
  • The HALO-VAE model is trained and test on the GRAB dataset

Evaluation

HALO base model (implicit hand model)

To generate the mesh given the 3D keypoints and precomputed transformation matrices, run:

cd halo_base
python generate.py CONFIG_FILE.yaml

To evaluate the hand surface, run:

python eval_meshes.py

We provide the preprocessed test set of the Youtube3D here. In addition, you can also find the produced meshes from our keypoint model on the same test set here.

HALO-VAE

To generate grasps given 3D object mesh, run:

python generate.py HALO_VAE_CONFIG_FILE.ymal --test_data DATA_PATH --inference

The evaluation code for contact/interpenetration and cluster analysis can be found in halo/evaluate.py and halo/evaluate_cluster.py accordningly. The intersection test demo is in halo/utils/interscetion.py

Training

HALO base model (implicit hand model)

Data Preprocessing

Each data point consists of 3D keypoints, transformation matrices, and a hand surface. To speed up the training, all transformation matrices are precomputed, either by out Canonicalization Layer or from the MANO. Please check halo/halo_base/prepare_data_from_mano_param_keypoints.py for details. We use the surface point sampling and occupancy computation method from the Occupancy Networks

Run

To train HALO base model (implicit functions), run:

cd halo_base
python train.py

HALO-VAE

To train HALO-VAE, run:

cd halo
python train.py

HALO_VAE requires a HALO base model trained using the transformation matrices from the Canonicalization Layer. The weights of the base model are not updated during the VAE training.

BibTex

@inproceedings{karunratanakul2021halo,
  title={A Skeleton-Driven Neural Occupancy Representation for Articulated Hands},
  author={Karunratanakul, Korrawe and, Spurr, Adrian and Fan, Zicong and Hilliges, Otmar and Tang, Siyu},
  booktitle={International Conference on 3D Vision (3DV)},
  year={2021}
}

References

Some code in our repo uses snippets of the following repo:

Please consider citing them if you found the code useful.

Acknowledgement

We sincerely acknowledge Shaofei Wang and Marko Mihajlovic for the insightful discussionsand helps with the baselines.

Owner
Korrawe Karunratanakul
Korrawe Karunratanakul
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
NL-Augmenter 🦎 β†’ 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 β†’ 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子θˆͺ 383 Dec 27, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
FCOS: Fully Convolutional One-Stage Object Detection (ICCV'19)

FCOS: Fully Convolutional One-Stage Object Detection This project hosts the code for implementing the FCOS algorithm for object detection, as presente

Tian Zhi 3.1k Jan 05, 2023
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Repository for code and dataset for our EMNLP 2021 paper - β€œSo You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - β€œSo You Thi

6 Oct 26, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
The InterScript dataset contains interactive user feedback on scripts generated by a T5-XXL model.

Interscript The Interscript dataset contains interactive user feedback on a T5-11B model generated scripts. Dataset data.json contains the data in an

AI2 8 Dec 01, 2022
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022