HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

Related tags

Deep Learninghalo
Overview

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

Oral Presentation, 3DV 2021

Korrawe Karunratanakul, Adrian Spurr, Zicong Fan, Otmar Hilliges, Siyu Tang
ETH Zurich

halo_teaser

report report

Video: Youtube

Abstract

We present Hand ArticuLated Occupancy (HALO), a novel representation of articulated hands that bridges the advantages of 3D keypoints and neural implicit surfaces and can be used in end-to-end trainable architectures. Unlike existing statistical parametric hand models (e.g.~MANO), HALO directly leverages the 3D joint skeleton as input and produces a neural occupancy volume representing the posed hand surface. The key benefits of HALO are (1) it is driven by 3D keypoints, which have benefits in terms of accuracy and are easier to learn for neural networks than the latent hand-model parameters; (2) it provides a differentiable volumetric occupancy representation of the posed hand; (3) it can be trained end-to-end, allowing the formulation of losses on the hand surface that benefit the learning of 3D keypoints. We demonstrate the applicability of HALO to the task of conditional generation of hands that grasp 3D objects. The differentiable nature of HALO is shown to improve the quality of the synthesized hands both in terms of physical plausibility and user preference.

Updates

  • December 1, 2021: Initial release for version 0.01 with demo.

Running the code

Dependencies

The easiest way to run the code is to use conda. The code is tested on Ubuntu 18.04.

Implicit surface from keypoints

halo_hand To try a demo which produces an implicit hand surface from the input keypoints, run:

cd halo
python demo_kps_to_hand.py

The demo will run the marching cubes algorithm and render each image in the animation above sequentially. The output images are in the output folder. The provided sample sequence are interpolations beetween 17 randomly sampled poses from the unseen HO3D dataset .

Dataset

  • The HALO-base model is trained using Youtube3D hand dataset. We only use the hand mesh ground truth without the images and videos. We provide the preprocessed data in the evaluation section.
  • The HALO-VAE model is trained and test on the GRAB dataset

Evaluation

HALO base model (implicit hand model)

To generate the mesh given the 3D keypoints and precomputed transformation matrices, run:

cd halo_base
python generate.py CONFIG_FILE.yaml

To evaluate the hand surface, run:

python eval_meshes.py

We provide the preprocessed test set of the Youtube3D here. In addition, you can also find the produced meshes from our keypoint model on the same test set here.

HALO-VAE

To generate grasps given 3D object mesh, run:

python generate.py HALO_VAE_CONFIG_FILE.ymal --test_data DATA_PATH --inference

The evaluation code for contact/interpenetration and cluster analysis can be found in halo/evaluate.py and halo/evaluate_cluster.py accordningly. The intersection test demo is in halo/utils/interscetion.py

Training

HALO base model (implicit hand model)

Data Preprocessing

Each data point consists of 3D keypoints, transformation matrices, and a hand surface. To speed up the training, all transformation matrices are precomputed, either by out Canonicalization Layer or from the MANO. Please check halo/halo_base/prepare_data_from_mano_param_keypoints.py for details. We use the surface point sampling and occupancy computation method from the Occupancy Networks

Run

To train HALO base model (implicit functions), run:

cd halo_base
python train.py

HALO-VAE

To train HALO-VAE, run:

cd halo
python train.py

HALO_VAE requires a HALO base model trained using the transformation matrices from the Canonicalization Layer. The weights of the base model are not updated during the VAE training.

BibTex

@inproceedings{karunratanakul2021halo,
  title={A Skeleton-Driven Neural Occupancy Representation for Articulated Hands},
  author={Karunratanakul, Korrawe and, Spurr, Adrian and Fan, Zicong and Hilliges, Otmar and Tang, Siyu},
  booktitle={International Conference on 3D Vision (3DV)},
  year={2021}
}

References

Some code in our repo uses snippets of the following repo:

Please consider citing them if you found the code useful.

Acknowledgement

We sincerely acknowledge Shaofei Wang and Marko Mihajlovic for the insightful discussionsand helps with the baselines.

Owner
Korrawe Karunratanakul
Korrawe Karunratanakul
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
Code of paper: "DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks"

DropAttack: A Masked Weight Adversarial Training Method to Improve Generalization of Neural Networks Abstract: Adversarial training has been proven to

倪仕文 (Shiwen Ni) 58 Nov 10, 2022
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
Create time-series datacubes for supervised machine learning with ICEYE SAR images.

ICEcube is a Python library intended to help organize SAR images and annotations for supervised machine learning applications. The library generates m

ICEYE Ltd 65 Jan 03, 2023
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022