This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

Overview

BiCAT

This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transformer". Our code is implemented based on Tensorflow version of SASRec and ASReP.

Environment

  • TensorFlow 1.12
  • Python 3.6.*

Datasets Prepare

Benchmarks: Amazon Review datasets Beauty, Movie Lens and Cell_Phones_and_Accessories. The data split is done in the leave-one-out setting. Make sure you download the datasets from the link. Please, use the DataProcessing.py under the data/, and make sure you change the DATASET variable value to your dataset name, then you run:

python DataProcessing.py

You will find the processed dataset in the directory with the name of your input dataset.

Beauty

1. Reversely Pre-training and Short Sequence Augmentation

Pre-train the model and output 20 items for sequences with length <= 20.

python main.py \
       --dataset=Beauty \
       --train_dir=default \
       --lr=0.001 \
       --hidden_units=128 \
       --maxlen=100 \
       --dropout_rate=0.7 \
       --num_blocks=2 \
       --l2_emb=0.0 \
       --num_heads=4 \
       --evalnegsample 100 \
       --reversed 1 \
       --reversed_gen_num 20 \
       --M 20

2. Next-Item Prediction with Reversed-Pre-Trained Model and Augmented dataset

python main.py \
       --dataset=Beauty \
       --train_dir=default \
       --lr=0.001 \
       --hidden_units=128 \
       --maxlen=100 \
       --dropout_rate=0.7 \
       --num_blocks=2 \
       --l2_emb=0.0 \
       --num_heads=4 \
       --evalnegsample 100 \
       --reversed_pretrain 1 \
       --aug_traindata 15 \
       --M 18

Cell_Phones_and_Accessories

1. Reversely Pre-training and Short Sequence Augmentation

Pre-train the model and output 20 items for sequences with length <= 20.

python main.py \
       --dataset=Cell_Phones_and_Accessories \
       --train_dir=default \
       --lr=0.001 \
       --hidden_units=32 \
       --maxlen=100 \
       --dropout_rate=0.5 \
       --num_blocks=2 \
       --l2_emb=0.0 \
       --num_heads=2 \
       --evalnegsample 100 \
       --reversed 1 \
       --reversed_gen_num 20 \
       --M 20

2. Next-Item Prediction with Reversed-Pre-Trained Model and Augmented dataset

python main.py \
       --dataset=Cell_Phones_and_Accessories \
       --train_dir=default \
       --lr=0.001 \
       --hidden_units=32 \
       --maxlen=100 \
       --dropout_rate=0.5 \
       --num_blocks=2 \
       --l2_emb=0.0 \
       --num_heads=2 \
       --evalnegsample 100 \
       --reversed_pretrain 1 \ 
       --aug_traindata 17 \
       --M 18

Citation

@misc{jiang2021sequential,
      title={Sequential Recommendation with Bidirectional Chronological Augmentation of Transformer}, 
      author={Juyong Jiang and Yingtao Luo and Jae Boum Kim and Kai Zhang and Sunghun Kim},
      year={2021},
      eprint={2112.06460},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}
Owner
John
My research interests are machine learning and recommender systems.
John
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Lightwood is Legos for Machine Learning.

Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu

MindsDB Inc 312 Jan 08, 2023
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
PyTorch for Semantic Segmentation

PyTorch for Semantic Segmentation This repository contains some models for semantic segmentation and the pipeline of training and testing models, impl

Zijun Deng 1.7k Jan 06, 2023
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022