Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

Overview

LassoBench

LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression.

Note: LassoBench is under active construction. Follow for more benchmarks soon.

Install and work with the development version

From a console or terminal clone the repository and install LassoBench:

::

git clone https://github.com/ksehic/LassoBench.git
cd LassoBench/
pip install -e .

Overview

The objective is to optimize the multi-dimensional hyperparameter that balances the least-squares estimation and the penalty term that promotes the sparsity.

The ambient space bounds are defined between [-1, 1].

LassoBench comes with two classes SyntheticBenchmark and RealBenchmark. While RealBenchmark is based on real-world applications found in medicine and finance, SyntheticBenchmark covers synthetic well-defined conditions. The user can select one of the predefined synthetic benchmarks or create a different bechmark.

Each benchmark comes with .evaluate that is used to evaluate the objective function, .test that provides the post-processing metrics (such as MSE on the test data and the F-score for synt benchs) and the argument mf_opt to define the multi-fidelity framework that is evaluated via .fidelity_evaluate.

The results are compared with the baselines LassoCV (.run_LASSOCV), AdaptiveLassoCV (to be implemented soon) and Sparse-HO (.run_sparseho).

Simple experiments are provided in example.py. In hesbo_example.py and alebo_example.py, we demostrate how to use LassoBench with some well-known HPO algorithms for high-dimensional problems.

Please refer to the reference for more details.

.
├── ...
├── example                    # Examples how to use LassoBench for HDBO algorithms
│   ├── alebo_example.py       # ALEBO applied on synt bench
│   ├── example.py             # Simple cases how to run with synt, real, and multifidelity benchs
│   ├── hesbo_example.py        # HesBO applied on synt and real bench
│   ├── hesbo_lib.pu            # HesBO library
│
└── ...

License

LassoBench is distributed under the MIT license. More information on the license can be found here

Simple synthetic bench code

import numpy as np
import LassoBench
synt_bench = LassoBench.SyntheticBenchmark(pick_bench='synt_simple')
d = synt_bench.n_features
random_config = np.random.uniform(low=-1.0, high=1.0, size=(d,))
loss = synt_bench.evaluate(random_config)

Real-world bench code

import numpy as np
import LassoBench
real_bench = LassoBench.RealBenchmark(pick_data='rcv1')
d = real_bench.n_features
random_config = np.random.uniform(low=-1.0, high=1.0, size=(d,))
loss = real_bench.evaluate(random_config)

Multi-information source bench code

import numpy as np
import LassoBench
real_bench_mf = LassoBench.RealBenchmark(pick_data='rcv1', mf_opt='discrete_fidelity')
d = real_bench_mf.n_features
random_config = np.random.uniform(low=-1.0, high=1.0, size=(d,))
fidelity_pick = 0
loss = real_bench_mf.fidelity_evaluate(random_config, index_fidelity=fidelity_pick)

List of synthetic benchmarks

Name Dimensionality Axis-aligned Subspace
synt_simple 60 3
synt_medium 100 5
synt_high 300 15
synt_hard 1000 50

List of real world benchmarks

Name Dimensionality Approx. Axis-aligned Subspace
breast_cancer 10 3
diabetes 8 5
leukemia 7 129 22
dna 180 43
rcv1 19 959 75

Cite

If you use this code, please cite:


Šehić Kenan, Gramfort Alexandre, Salmon Joseph and Nardi Luigi. "LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso", TBD, 2021.

Owner
Kenan Šehić
Postdoctoral research fellow at Lund University - Department of Computer Science with interest in machine learning and uncertainty quantification
Kenan Šehić
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
190 Jan 03, 2023
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
Code-free deep segmentation for computational pathology

NoCodeSeg: Deep segmentation made easy! This is the official repository for the manuscript "Code-free development and deployment of deep segmentation

André Pedersen 26 Nov 23, 2022
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022