Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Overview

Python-for-Epidemiologists

Join the chat at https://gitter.im/zEpid/community DOI

This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are hosted here. For more information on zEpid, see GitHub or ReadTheDocs.

The directory of this guide is

  1. Python Basics
  2. Basics of pandas (data management library)
  3. Epidemiology analyses in Python
    1. Basics
    2. Missing data
    3. Causal inference
      1. Time-fixed treatments
      2. Time-varying treatments
    4. Sensitivity analyses

Required packages for tutorial

To complete the tutorial, user must have the following packages installed: numpy, pandas, zepid, matplotlib, statsmodels, lifelines, and sklearn

IDE (Integrated Development Environment)

No IDE is required to complete the tutorial. All files are available in ipynb also known as jupyter notebooks. Code can be either downloaded or copied from the notebooks.

Here are some IDEs I have used in the past (and what I believe to be their advantages and disadvantages

Rodeo

This is the IDE I used for a long time. It is set up like RStudio

Advantages:

Basically RStudio but for Python, decent interface, easy to run line-by-line, easy to visualize plots (although it encourage bad habits)

Disadvantages:

Does not have all the features of RStudio (will delete changes if closed without saving), sucks up a lot of memory, sometimes the auto-complete would stop working if I hit more than 300+ lines of code, the environment tab is not great (don't expect it to open anything like RStudio)

Aside: their website has great tutorials how to run some basic stuff in Python if you are new to analysis in Python https://rodeo.yhat.com/

jupyter notebooks

Designed to be like a lab notebook, or like R markdown. Supports a pseudo-line-by-line concept Good for writing, since it allows for MarkDown. While I know a lot of people like jupyter, I only really use it for examples of code, not my personal programming. I never liked how it had to open via a Web Browser. I would rather have it be separate program. However, all guides were made using this IDE

PyCharm

This is the IDE I currently use

Advantages:

Easily set up virtual environments, interacts natively with Git, supports different file formats with plug-ins (e.g. .md), enforces certain coding conventions, better debug code features, organization of files under the project tab are convenient

Disadvantages:

Not great for running line-by-line code (it can do it, just not as elegantly), little more hardcore (I wouldn't really consider it a beginner's IDE. It requires some knowledge of set-up of Python)

IDLE

Ships with the basic Python 3.x installation. It is very basic and does not support line-by-line. Wouldn't recommend unless you are just starting with Python and don't want to commit to an IDE yet

Spyder

Ships with conda. Not bad but I didn't use it that much (I couldn't get the hang of it). Similarly it is an RStudio copy. Can't say too much since I haven't used it extensively

Basic Introduction to Python

If you have never used Python before, I have created some introductory materials to Python and the data management library I use, pandas. These are basic guides, but they also point to other resources. Please READ ALL OF THE BELOW BEFORE PROCEEDING.

Installing Python

To install, Python 3.x, we can download it directly from: https://www.python.org/downloads/

The installer provides an option to add Python3 to PATH, it is highly recommended you do this, since it allows you to avoid having to do it manually

Open Command Prompt / Terminal. When opened, type python and this should open Python in the same window. From here, you can quit by typing 'quit()' or closing the window. If this does NOT work, make sure your environmental variable was created properly

Installing Python Packages

Packages are what stores Python functions that we will use. These packages are contributed by various members of the community (including me)) and there is a wide array. To be able to download packages, we need to make sure we have an environmental variable created for python. We will discuss how to install packages

Python 3.x conveniently comes with a package manager. Basically it stores all the packages and we can use it to download new ones or update already downloaded ones.

To download a new package: Open Command Prompt/Terminal and use the following code (we will be installing pandas)

pip install pandas

To update a Python package, type the following command into Command Prompt. For example, we will update our pandas package

pip install pandas --upgrade

That concludes the basics. Please review parts 1 and 2 of the tutorials next

Comments
  • Cochran-Mantel-Haenszel

    Cochran-Mantel-Haenszel

    Thank you @pzivich for this amazing resource. Having the Hernan/Robbins causal model code in python is super helpful... g-estimation!

    I have a request... do you have a Cochran-Mantel-Haenszel script? If you get the chance, please, it would be useful to us to have in this repo. Thank you in advance!

    opened by opioiddatalab 2
  • Slight changes in Incidence Rate Ratio

    Slight changes in Incidence Rate Ratio

    Incidence Ratio Rate Paragraph

    • Fixed repetition
    • T1 & T0 are defined the same way. I believe that T0 is the person-time contributed by people NOT treated with ART
    opened by jaimiles23 0
  • Updates for v0.8.0

    Updates for v0.8.0

    Checklist for various notebooks to update with v0.8.0 release (hasn't released yet)

    • [x] IPTW update. Lots of major changes, so notebook needs to be completely overhauled

    • [x] Demonstrate new diagnostic functions for IPTW, g-formula, AIPW, TMLE

    • [x] Demonstrate g-bound argument

    • [x] Remove TMLE machine learning custom models. This is being removed in favor of cross-fitting. Can leave how to apply for now, but add the warning and mention will be cut in v0.9.0

    opened by pzivich 0
  • Notebooks not rendering in GitHub

    Notebooks not rendering in GitHub

    Sometimes GitHub has trouble rendering the notebooks. AFAIK the rendering system is behind the scenes at GitHub. Others have this same problem across repos and it sometimes occurs to me as well.

    If the notebook won't render in GitHub, you can copy the URL to the notebook you want to view and use the following site to view the notebook: https://nbviewer.jupyter.org/

    opened by pzivich 0
  • Replicate

    Replicate "Causal Inference"

    Issue to track progress on implementation of Hernan and Robins "Causal Inference" chapters

    • [x] Chapter 12: Inverse probability weights

    • [x] Chapter 13: Parametric g-formula

    • [x] Chapter 14: G-estimation of structural nested models

    • [x] ~Chapter 16: G-estimation for IV analysis~

    • [ ] Chapter 17: Causal survival analysis

    • [ ] Part III: Time-varying treatments

    ~G-estimation is not currently implemented. I will need to implement these before chapter 14 can be done.~

    Currently there are no plans to replicate Chapter 15 (propensity scores and regression) or Chapter 16 (instrumental variables) since the first method does not require zEpid and I am unfamiliar with the second. Maybe instrumental variables will be added in the future?

    For Chapter 16, I am considering demonstrating the usage of g-estimation instead of two-stage least-squares. Specifically, using the same data as done in Chapter 16 but following Technical Point 16.3

    enhancement 
    opened by pzivich 0
  • Tutorials

    Tutorials

    On the website, create quick tutorials demonstrating each of the implemented estimators, descriptions of how they work, and why you might want to use them. Might be more digestible than the current docs (also better justify why to choose one over the other)

    Reference to base on https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html https://github.com/CamDavidsonPilon/lifelines/blob/master/docs/jupyter_notebooks/Proportional%20hazard%20assumption.ipynb

    TODO

    • [x] Basic measures

    • [x] splines

    • [x] IPTW: time-fixed treatment

    • [ ] IPTW: stochastic treatment

    • [ ] IPTW: time-varying treatment

    • [x] IPCW

    • [x] IPMW: single variable

    • [ ] IPMW: monotone

    • [ ] IPMW: nonmonotone (to add after implemented)

    • [x] G-formula: time-fixed binary treatment, binary outcome

    • [x] G-formula: time-fixed categorical treatment, binary outcome

    • [ ] G-formula: time-fixed continuous treatment, binary outcome (to add after implemented)

    • [x] G-formula: time-fixed binary treatment, continuous outcome

    • [x] G-formula: Monte Carlo

    • [x] G-formula: Iterative Conditional

    • [x] G-estimation of SNM

    • [x] AIPTW

    • [ ] AIPMW

    • [x] TMLE

    • [x] TMLE: stochastic treatment

    • [ ] LTMLE (to add after implemented)

    • [x] Quantitative bias analysis

    • [x] Functional form assessment

    • [x] Generalizability

    • [ ] Transportability (IPSW, g-transport, AIPSW)

    • [x] Monte Carlo g-formula by-hand (helps to explain underlying process)

    opened by pzivich 1
Releases(v0.8.0)
Owner
Paul Zivich
Epidemiology post-doc working in epidemiologic methods and infectious diseases.
Paul Zivich
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

3 Dec 18, 2021