Official code for UnICORNN (ICML 2021)

Overview

UnICORNN
(Undamped Independent Controlled Oscillatory RNN)
[ICML 2021]

This repository contains the implementation to reproduce the numerical experiments of the ICML 2021 paper UnICORNN: A recurrent model for learning very long time dependencies

Requirements

This code runs on GPUs only, as the recurrent part of UnICORNN is implemented directly in CUDA. The CUDA extension is compiled using pynvrtc. Make sure all of the packages below are installed.

python 3.7.4
cupy 7.6.0
pynvrtc 9.2
pytorch 1.5.1+cu101 
torchvision 0.6.1+cu101
torchtext 0.6.0
numpy 1.17.3
spacy 2.3.2

Speed

The recurrent part of UnICORNN is directly implemented in pure CUDA (as a PyTorch extension to the remaining standard PyTorch code), where each dimension of the underlying dynamical system is computed on an independent CUDA thread. This leads to an amazing speed-up over using PyTorch on GPUs directly (depending on the data set around 30-50 times faster). Below is a speed comparison of our UnICORNN implementation to the fastest RNN implementations you can find (the set-up of this benchmark can be found in the main paper):

Datasets

This repository contains the codes to reproduce the results of the following experiments for the proposed UnICORNN:

  • Permuted Sequential MNIST
  • Noise-padded CIFAR10
  • EigenWorms
  • Healthcare AI: Respiratory rate (RR)
  • Healthcare AI: Heart rate (HR)
  • IMDB

Results

The results of the UnICORNN for each of the experiments are:

Experiment Result
psMNIST 98.4% test accuracy
Noise-padded CIFAR10 62.4% test accuarcy
Eigenworms 94.9% test accuracy
Healthcare AI: RR 1.00 L2 loss
Healthcare AI: HR 1.31 L2 loss
IMDB 88.4% test accuracy

Citation

@inproceedings{pmlr-v139-rusch21a,
  title = 	 {UnICORNN: A recurrent model for learning very long time dependencies},
  author =       {Rusch, T. Konstantin and Mishra, Siddhartha},
  booktitle = 	 {Proceedings of the 38th International Conference on Machine Learning},
  pages = 	 {9168--9178},
  year = 	 {2021},
  volume = 	 {139},
  series = 	 {Proceedings of Machine Learning Research},
  publisher =    {PMLR},
}
Owner
Konstantin Rusch
PhD student in applied mathematics at ETH Zurich.
Konstantin Rusch
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Rao Muhammad Umer 6 Nov 14, 2022