GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

Overview

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, Weiran He

If you use this code for your research, please cite our paper:

@inproceedings{DBLP:conf/bmvc/ZhouXYFHH17,
  author    = {Shuchang Zhou and
               Taihong Xiao and
               Yi Yang and
               Dieqiao Feng and
               Qinyao He and
               Weiran He},
  title     = {GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data},
  booktitle = {Proceedings of the British Machine Vision Conference (BMVC)},
  year      = {2017},
  url       = {http://arxiv.org/abs/1705.04932},
  timestamp = {http://dblp.uni-trier.de/rec/bib/journals/corr/ZhouXYFHH17},
  bibsource = {dblp computer science bibliography, http://dblp.org}
}

We have two following papers, DNA-GAN and ELEGANT, that generalize the method into multiple attributes case. It is worth mentioning that ELEGANT can transfer multiple face attributes on high resolution images. Please pay attention to our new methods!

Introduction

This is the official source code for the paper GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data. All the experiments are initially done in our proprietary deep learning framework. For convenience, we reproduce the results using TensorFlow.

cross

GeneGAN is a deterministic conditional generative model that can learn to disentangle the object features from other factors in feature space from weak supervised 0/1 labeling of training data. It allows fine-grained control of generated images on one certain attribute in a continous way.

Requirement

  • Python 3.5
  • TensorFlow 1.0
  • Opencv 3.2

Training GeneGAN on celebA dataset

  1. Download celebA dataset and unzip it into datasets directory. There are various source providers for CelebA datasets. To ensure that the size of downloaded images is correct, please run identify datasets/celebA/data/000001.jpg. The size should be 409 x 687 if you are using the same dataset. Besides, please ensure that you have the following directory tree structure.
├── datasets
│   └── celebA
│       ├── data
│       ├── list_attr_celeba.txt
│       └── list_landmarks_celeba.txt
  1. Run python preprocess.py. It will take several miniutes to preprocess all face images. A new directory datasets/celebA/align_5p will be created.

  2. Run python train.py -a Bangs -g 0 to train GeneGAN on the attribute Bangs. You can train GeneGAN on other attributes as well. All available attribute names are listed in the list_attr_celeba.txt file.

  3. Run tensorboard --logdir='./' --port 6006 to watch your training process.

Testing

We provide three kinds of mode for test. Run python test.py -h for detailed help. The following example is running on our GeneGAN model trained on the attribute Bangs. Have fun!

1. Swapping of Attributes

You can easily add the bangs of one person to another person without bangs by running

python test.py -m swap -i datasets/celebA/align_5p/182929.jpg -t datasets/celebA/align_5p/022344.jpg
input target out1 out2
Swap Attribute

2. Linear Interpolation of Image Attributes

Besides, we can control to which extent the bangs style is added to your input image through linear interpolation of image attribute. Run the following code.

python test.py -m interpolation -i datasets/celebA/align_5p/182929.jpg -t datasets/celebA/align_5p/035460.jpg -n 5
interpolation target
Linear Interpolation

3. Matrix Interpolation in Attribute Subspace

We can do something cooler. Given four images with bangs attributes at hand, we can observe the gradual change process of our input images with a mixing of difference bangs style.

python test.py -m matrix -i datasets/celebA/align_5p/182929.jpg --targets datasets/celebA/align_5p/035460.jpg datasets/celebA/align_5p/035451.jpg datasets/celebA/align_5p/035463.jpg datasets/celebA/align_5p/035474.jpg -s 5 5
matrix
Matrix Interpolation

ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022