To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Overview

Vision_Beyond_Limits_211672

Table Of Content

Problem Statement

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery. We are provided with post earthquake satellite imagery along with the GeoJSON file containing the extent of damage of each building. Our task is to take the images, detect and localise the buildings and then classify them based on the damage inflicted upon them.

Relevance

We need a satellite image classifier to inform about the disaster in order for the rescue teams to decide where to head first based on the damage assessed by our model and arrive at the more damaged localities and save as many lives as possible.


Methodology

UNET

  • U-net is an encoder-decoder deep learning model which is known to be used in medical images. It is first used in biomedical image segmentation. U-net contained three main blocks, down-sampling, up-sampling, and concatenation.
  • The important difference between U-net and other segmentation net is that U-net uses a totally different feature fusion method: concatenation. It concatenates the feature channel together to get a feature group. It could decrease the loss of features during convolution layers.
  • The U-Net architecture contains two paths: contraction path (also called as the encoder, The encoder part is used to capture the context in the image using convolutional layer) and expanding path (also called as the decoder, The decoder part is used to enable precise localization using transposed convolutions).
  • The main idea behind the U-Net is that during the training phase the first half which is the contracting path is responsible for producing the relevant information by minimising a cost function related to the operation desired and at the second half which is the expanding path the network it would be able to construct the output image.

RESNET50

  • ResNet stands for ‘Residual Network’. ResNet-50 is a convolutional neural network that is 50 layers deep.
  • Deep residual nets make use of residual blocks to improve the accuracy of the models. The concept of “skip connections,” which lies at the core of the residual blocks, is the strength of this type of neural network.

File Structure

 ┣ classification model
 ┃ ┣ damage_classification.py
 ┃ ┣ damage_inference.py
 ┃ ┣ model.py
 ┃ ┣ process_data.py
 ┃ ┗ process_data_inference.py
 ┣ spacenet
 ┃ ┣ inference
 ┃ ┃ ┗ inference.py
 ┃ ┗ src
 ┃ ┃ ┣ features
 ┃ ┃ ┃ ┣ build_labels.py
 ┃ ┃ ┃ ┣ compute_mean.py
 ┃ ┃ ┃ ┗ split_dataset.py
 ┃ ┃ ┗ models
 ┃ ┃ ┃ ┣ dataset.py
 ┃ ┃ ┃ ┣ evaluate_model.py
 ┃ ┃ ┃ ┣ segmentation.py
 ┃ ┃ ┃ ┣ segmentation_cpu.py
 ┃ ┃ ┃ ┣ tboard_logger.py
 ┃ ┃ ┃ ┣ tboard_logger_cpu.py
 ┃ ┃ ┃ ┣ train_model.py
 ┃ ┃ ┃ ┣ transforms.py
 ┃ ┃ ┃ ┗ unet.py
 ┣ utils
 ┃ ┣ combine_jsons.py
 ┃ ┣ data_finalize.sh
 ┃ ┣ inference.sh
 ┃ ┣ inference_image_output.py
 ┃ ┣ mask_polygons.py
 ┃ ┗ png_to_geotiff.py
 ┣ weights
 ┃ ┗ mean.npy
 ┣ Readme.md
 ┗ requirements.txt

Installation and Usage

  • Clone this git repo
git clone https://github.com/kwadhwa539/Vision_Beyond_Limits_211672.git

Environment Setup

  • During development we used Google colab.
  • Our minimum Python version is 3.6+, you can get it from here.
  • Once in your own virtual environment you can install the packages required to train and run the baseline model.
  • Before installing all dependencies run pip install numpy tensorflow for CPU-based machines or pip install numpy tensorflow-gpu && conda install cupy for GPU-based (CUDA) machines, as they are install-time dependencies for some other packages.
  • Finally, use the provided requirements.txt file for the remainder of the Python dependencies like so, pip install -r requirements.txt (make sure you are in the same environment as before)

Implementation

Localization Training

The flow of the model is as follows:-

  • Expansion Part:-

    1. Applying Convolution to the Input Image, starting with 32 features, kernel size 3x3 and stride 1 in first convolution.
    2. Applying BatchNormalization on convoluted layers and feeding the output to the next Convolution layer.
    3. Again applying another convolution to this normalised layer, but keeping kernel size 4x4 and stride 2.

    These 3 steps are repeated till we reach 1024 features, in the bottleneck layer.

  • Contraction Part:-

    1. Upsample(de-convolute) the preceding layer to halve the depth.
    2. Concatenating with the corresponding expansion layer.
    3. Applying Batch Normalization.

    In the last step, we convolute with a kernel size of 1x1, giving the output label of depth 1.

(loss function used in training:- softmax_crossentropy)

Below we will walk through the steps we have used for the localization training. First, we must create masks for the localization, and have the data in specific folders for the model to find and train itself. The steps we have built are described below:

  1. Run mask_polygons.py to generate a mask file for the chipped images.
  • Sample call: python mask_polygons.py --input /path/to/xBD --single-file --border 2
  • Here border refers to shrinking polygons by X number of pixels. This is to help the model separate buildings when there are a lot of "overlapping" or closely placed polygons.
  • Run python mask_polygons.py --help for the full description of the options.
  1. Run data_finalize.sh to setup the image and labels directory hierarchy that the spacenet model expects (it will also run compute_mean.py script to create a mean image that our model uses during training.
  • Sample call: data_finalize.sh -i /path/to/xBD/ -x /path/to/xView2/repo/root/dir/ -s .75
  • -s is a crude train/val split, the decimal you give will be the amount of the total data to assign to training, the rest to validation.
  • You can find this later in /path/to/xBD/spacenet_gt/dataSplit in text files, and easily change them after we have run the script.
  • Run data_finalize.sh for the full description of the options.
  1. After these steps have been run you will be ready for the instance segmentation training.
  • The original images and labels are preserved in the ./xBD/org/$DISASTER/ directories, and just copies the images to the spacenet_gt directory.

The main file is train_model.py and the options are below

A sample call we used is below(You must be in the ./spacenet/src/models/ directory to run the model):

$ python train_model.py /path/to/xBD/spacenet_gt/dataSet/ /path/to/xBD/spacenet_gt/images/ /path/to/xBD/spacenet_gt/labels/ -e 100

WARNING: If you have just ran the (or your own) localization model, be sure to clean up any localization specific directories (e.g. ./spacenet) before running the classification pipeline. This will interfere with the damage classification training calls as they only expect the original data to exist in directories separated by disaster name. You can use the split_into_disasters.py program if you have a directory of ./images and ./labels that need to be separated into disasters.

  1. You will need to run the process_data.py python script to extract the polygon images used for training, testing, and holdout from the original satellite images and the polygon labels produced by SpaceNet. This will generate a csv file with polygon UUID and damage type as well as extracting the actual polygons from the original satellite images. If the val_split_pct is defined, then you will get two csv files, one for test and one for train.

Damage Classification Training

  • In the final step we will be doing damage classification training on the provided training dataset. For this we have used ResNet-50 in integration with a typical U-Net.
  1. In order to optimise the model and increase the pixel accuracy, we first pre-process the given data by extracting the labelled polygon images, i.e. each unique building, using the polygon coordinates provided in the true label. This will give us 1000s of cropped images of the buildings.
  2. Then, by referring to the damage type, the model will train using UNet/ResNet architecture, which is as follows:-
    1. Applying 2D convolutions to the input image of (128,128,3) and max pooling the generated array. We do this for 3 layers.
    2. Then using the ResNet approach we concatenate the corresponding expansion array, and apply a Relu-Dense layer over it, starting with 2024 features to eventually give an array of original dimensions but with 4 features/classes(based on the damage type).
  • sample call:-
$ python damage_classification.py --train_data /path/to/XBD/$process_data_output_dir/train --train_csv train.csv --test_data /path/to/XBD/$process_data_output_dir/test --test_csv test.csv --model_out path/to/xBD/output-model --model_in /path/to/saved-model

Results

Sr. Metric Score
1. ACCURACY 0.81
1a. PIXEL ACCURACY 0.76
1b. MEAN CLASS ACCURACY 0.80
2. IOU 0.71
2a. MEAN IOU 0.56
3. PRECISION 0.51
4. RECALL 0.75

(On left, Ground truth image. On right, Predicted image.)

(epoch v/s accuracy)

(epoch v/s loss)


CONCLUSION

  • The above model achieves quite good accuracy in terms of localization of buildings from satellite imagery as well as classifying the damage suffered post disaster. It is very efficient in terms of time required to train the model and size of input dataset provided.
  • The optimum loss and best accuracy for localization training was achieved on 30 epochs. The various methods used such as data augmentation and different loss functions helped us to avoid overfitting the data.
  • Hence, this model will help to assess the post disaster damage, using the satellite imagery.
  • This challenge gave us a lot of insight on the satellite image, multi-classification problem. It made us realise the crucial need to utilise the advantages of deep learning to solve practical global issues such as post disaster damage assessment and much more.

Future Work

  • look for a better and efficient model
  • solve version-related issues in the code

Contributors

Acknowledgement

Resources

Back To The Top

Owner
Kunal Wadhwa
2nd Year Student at VJTI, Matunga Philomath : )
Kunal Wadhwa
Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch

Implementing SYNTHESIZER: Rethinking Self-Attention in Transformer Models using Pytorch Reference Paper URL Author: Yi Tay, Dara Bahri, Donald Metzler

Myeongjun Kim 66 Nov 30, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023

FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Deep learning library for solving differential equations and more

DeepXDE Voting on whether we should have a Slack channel for discussion. DeepXDE is a library for scientific machine learning. Use DeepXDE if you need

Lu Lu 1.4k Dec 29, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022