Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

Overview

For better performance, you can try NLPGNN, see NLPGNN for more details.

BERT-NER Version 2

Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).

The original version (see old_version for more detail) contains some hard codes and lacks corresponding annotations,which is inconvenient to understand. So in this updated version,there are some new ideas and tricks (On data Preprocessing and layer design) that can help you quickly implement the fine-tuning model (you just need to try to modify crf_layer or softmax_layer).

Folder Description:

BERT-NER
|____ bert                          # need git from [here](https://github.com/google-research/bert)
|____ cased_L-12_H-768_A-12	    # need download from [here](https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip)
|____ data		            # train data
|____ middle_data	            # middle data (label id map)
|____ output			    # output (final model, predict results)
|____ BERT_NER.py		    # mian code
|____ conlleval.pl		    # eval code
|____ run_ner.sh    		    # run model and eval result

Usage:

bash run_ner.sh

What's in run_ner.sh:

python BERT_NER.py\
    --task_name="NER"  \
    --do_lower_case=False \
    --crf=False \
    --do_train=True   \
    --do_eval=True   \
    --do_predict=True \
    --data_dir=data   \
    --vocab_file=cased_L-12_H-768_A-12/vocab.txt  \
    --bert_config_file=cased_L-12_H-768_A-12/bert_config.json \
    --init_checkpoint=cased_L-12_H-768_A-12/bert_model.ckpt   \
    --max_seq_length=128   \
    --train_batch_size=32   \
    --learning_rate=2e-5   \
    --num_train_epochs=3.0   \
    --output_dir=./output/result_dir

perl conlleval.pl -d '\t' < ./output/result_dir/label_test.txt

Notice: cased model was recommened, according to this paper. CoNLL-2003 dataset and perl Script comes from here

RESULTS:(On test set)

Parameter setting:

  • do_lower_case=False
  • num_train_epochs=4.0
  • crf=False
accuracy:  98.15%; precision:  90.61%; recall:  88.85%; FB1:  89.72
              LOC: precision:  91.93%; recall:  91.79%; FB1:  91.86  1387
             MISC: precision:  83.83%; recall:  78.43%; FB1:  81.04  668
              ORG: precision:  87.83%; recall:  85.18%; FB1:  86.48  1191
              PER: precision:  95.19%; recall:  94.83%; FB1:  95.01  1311

Result description:

Here i just use the default paramaters, but as Google's paper says a 0.2% error is reasonable(reported 92.4%). Maybe some tricks need to be added to the above model.

reference:

[1] https://arxiv.org/abs/1810.04805

[2] https://github.com/google-research/bert

Owner
Kaiyinzhou
Interested in machine learning, deep learning and knowledge graph. Familiar with basic machine learning algorithms, especially variational inference.
Kaiyinzhou
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 30, 2022
Natural Language Processing Tasks and Examples.

Natural Language Processing Tasks and Examples With the advancement of A.I. technology in recent years, natural language processing technology has bee

Soohwan Kim 53 Dec 20, 2022
Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

vanint 101 Dec 30, 2022
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
OceanScript is an Esoteric language used to encode and decode text into a formulation of characters

OceanScript is an Esoteric language used to encode and decode text into a formulation of characters - where the final result looks like waves in the ocean.

Textpipe: clean and extract metadata from text

textpipe: clean and extract metadata from text textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata

Textpipe 298 Nov 21, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023
NLP-Project - Used an API to scrape 2000 reddit posts, then used NLP analysis and created a classification model to mixed succcess

Project 3: Web APIs & NLP Problem Statement How do r/Libertarian and r/Neoliberal differ on Biden post-inaguration? The goal of the project is to see

Adam Muhammad Klesc 2 Mar 29, 2022
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.

Improving Transformer Models by Reordering their Sublayers This repository contains the code for running the character-level Sandwich Transformers fro

Ofir Press 53 Sep 26, 2022
👄 The most accurate natural language detection library for Python, suitable for long and short text alike

1. What does this library do? Its task is simple: It tells you which language some provided textual data is written in. This is very useful as a prepr

Peter M. Stahl 334 Dec 30, 2022
Prompt tuning toolkit for GPT-2 and GPT-Neo

mkultra mkultra is a prompt tuning toolkit for GPT-2 and GPT-Neo. Prompt tuning injects a string of 20-100 special tokens into the context in order to

61 Jan 01, 2023
Easy to start. Use deep nerual network to predict the sentiment of movie review.

Easy to start. Use deep nerual network to predict the sentiment of movie review. Various methods, word2vec, tf-idf and df to generate text vectors. Various models including lstm and cov1d. Achieve f1

1 Nov 19, 2021
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
Graphical user interface for Argos Translate

Argos Translate GUI Website | GitHub | PyPI Graphical user interface for Argos Translate. Install pip3 install argostranslategui

Argos Open Tech 16 Dec 07, 2022