In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Overview

Making Emojis More Predictable

by Karan Abrol, Karanjot Singh and Pritish Wadhwa, Natural Language Processing (CSE546) under the guidance of Dr. Shad Akhtar from Indraprastha Institute of Information Technology, Delhi.

Introduction

The advent of social media platforms like WhatsApp, Facebook (Meta) and Twitter, etc. has changed natural language conversations forever. Emojis are small ideograms depicting objects, people, and scenes (Cappallo et al., 2015). Emojis are used to complement short text messages with a visual enhancement and have become a de-facto standard for online communication. Our aim is to predict a single emoji that appears in the input tweets.

In this project, we aim to achieve the task of predicting emojis from tweets. We aim to investigate the relationship between words and emojis.

Project Pipeline Summary

We started off by collecting the data. The data was then thoroughly studied and preprocessed. Key features were also extracted at this stage. Due to computational restrictions, a subset of data was taken which was further divided into training, test- ing and validation split, such that the distribution of any class in any two sets were same. After this, various machine learning and deep learning models were applied on the data set and the results were generated and analysed.

Deployment

Emoji Prediction Website

Screenshots

Prediction Website1 Prediction Website2

Dataset

The data we used consists of a list of tweets associated with a single emoji, indexed by 20 labels for each of the 20 emojis. 5,00,000 Tweets by users in the United States, from October 2015 to Jan 2018, were retrieved using the Twitter API. The script for scraping this dataset was made available by the SemEval 2018 challenge. Due to computational limitations we merged the test and trial data, and further divided that into training, trial and test data with a split of 70:10:20. We maintained the label ratios for each emoji across the three sets to best reflect how frequently they are used in real life.

Models

  • Machine Learning Models:

    • Logistic Regression
    • K-Nearest Neighbours
    • Stochastic Gradient Descent
    • Random Forest Classifier
    • Naive Bayes
    • Adaboost Classifier
    • Support Vector Machine
  • Deep Learning Models:

    • RNN
    • LSTM
    • BiLSTM

Contact

For further queries feel free to reach out to following contributors.
Karan Abrol ([email protected])
Karanjot Singh ([email protected])
Pritish Wadhwa ([email protected])

Final Report

Final Report 1
Final Report 2
Final Report 3
Final Report 4
Final Report 5
Final Report 6
Final Report 7

Owner
Karanjot Singh
GDSC Lead @dsc-iiitd | Outside Collaborator @oppia | Flutter/ Kotlin Developer | Cloud Enthusiast | CSE Junior @IIIT-Delhi
Karanjot Singh
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Jan 02, 2023
Google and Stanford University released a new pre-trained model called ELECTRA

Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For furth

Yiming Cui 1.2k Dec 30, 2022
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
Use the power of GPT3 to execute any function inside your programs just by giving some doctests

gptrun Don't feel like coding today? Use the power of GPT3 to execute any function inside your programs just by giving some doctests. How is this diff

Roberto Abdelkader Martínez Pérez 11 Nov 11, 2022
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
Flaxformer: transformer architectures in JAX/Flax

Flaxformer: transformer architectures in JAX/Flax Flaxformer is a transformer library for primarily NLP and multimodal research at Google. It is used

Google 114 Dec 29, 2022
Python implementation of TextRank for phrase extraction and summarization of text documents

PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document

derwen.ai 1.9k Jan 06, 2023
基于pytorch_rnn的古诗词生成

pytorch_peot_rnn 基于pytorch_rnn的古诗词生成 说明 config.py里面含有训练、测试、预测的参数,更改后运行: python main.py 预测结果 if config.do_predict: result = trainer.generate('丽日照残春')

西西嘛呦 3 May 26, 2022
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

Michael Petrochuk 2.1k Jan 01, 2023
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
This repository describes our reproducible framework for assessing self-supervised representation learning from speech

LeBenchmark: a reproducible framework for assessing SSL from speech Self-Supervised Learning (SSL) using huge unlabeled data has been successfully exp

49 Aug 24, 2022
**NSFW** A chatbot based on GPT2-chitchat

DangBot -- 好怪哦,再来一句 卡群怪话bot,powered by GPT2 for Chinese chitchat Training Example: python train.py --lr 5e-2 --epochs 30 --max_len 300 --batch_size 8

Tommy Yang 11 Jul 21, 2022