A computer vision pipeline to identify the "icons" in Christian paintings

Overview

Christian-Iconography

Open In Colab Screenshot from 2022-01-08 18-26-30

A computer vision pipeline to identify the "icons" in Christian paintings.

A bit about iconography.

Iconography is related to identifying the subject itself in the image. So, for instance when I say Christian Iconography I would mean that I am trying to identify some objects like crucifix or mainly in this project the saints!

Inspiration

I was looking for some interesting problem to solve and I came across RedHenLab's barnyard of projects and it had some really wonderful ideas there and this particular one intrigued me. On the site they didn't have much progress on it as the datasets were not developed on this subject but after surfing around I found something and just like that I got started!

Dataset used.

The project uses the ArtDL dataset which contains 42,479 images of artworks portraying Christian saints, divided in 10 classes: Saint Dominic (iconclass 11HH(DOMINIC)), Saint Francis of Assisi (iconclass 11H(FRANCIS)), Saint Jerome (iconclass 11H(JEROME)), Saint John the Baptist (iconclass 11H(JOHN THE BAPTIST)), Saint Anthony of Padua (iconclass 11H(ANTONY OF PADUA), Saint Mary Magdalene (iconclass 11HH(MARY MAGDALENE)), Saint Paul (iconclass 11H(PAUL)), Saint Peter (iconclass 11H(PETER)), Saint Sebastian (iconclass 11H(SEBASTIAN)) and Virgin Mary (iconclass 11F). All images are associated with high-level annotations specifying which iconography classes appear in them (from a minimum of 1 class to a maximum of 7 classes).

Sources

Screenshot from 2022-01-08 18-08-56

Preprocessing steps.

All the images were first padded so that the resolution is sort of intact when the image is resized. A dash of normalization and some horizontal flips and the dataset is ready to be eaten/trained on by our model xD.

Architecture used.

As mentioned the ArtDL dataset has around 43k images and hence training it completely wouldn't make sense. Hence a ResNet50 pretrained model was used.

But there is a twist.

Instead of just having the final classifying layer trained we only freeze the initial layer as it has gotten better at recognizing patterns from a lot of images it might have trained on. And then we fine-tune the deeper layers so that it learns the art after the initial abstraction. Another deviation is to replace the final linear layer by 1x1 conv layer to make the classification.

Quantiative Results.

Training

I trained the network for 10 epochs which took around 3 hours and used Stochastic Gradient Descent with LR=0.01 and momentum 0.9. The accuracy I got was 64% on the test set which can be further improved.

Classification Report

Screenshot from 2022-01-10 22-07-52

From the classification report it is clear that Saint MARY has the most number of samples in the training set and the precision for that is high. On the other hand other samples are low in number and hence their scores are low and hence we can't infer much except the fact that we need to oversample some of these classes so that we can gain more meaningful resuls w.r.t accuracy and of course these metrics as well

Qualitative Results

We try an image of Saint Dominic and see what our classifier is really learning.

Screenshot from 2022-01-10 22-10-37

Saliency Map

Screenshot from 2022-01-10 22-12-31

We can notice that regions around are more lighter than elsewhere which could mean that our classifier at least knows where to look :p

Guided-Backpropagation

Screenshot from 2022-01-10 22-14-26

So what really guided backprop does is that it points out the positve influences while classifiying an image. From this result we can see that it is really ignoring the padding applied and focussing more on the body and interesting enough the surroundings as well

Grad-CAM!

Screenshot from 2022-01-10 22-15-27

As expected the Grad-CAM when used shows the hot regions in our images and it is around the face and interesting enough the surrounding so maybe it could be that surroundings do have a role-play in type of saint?

Possible improvements.

  • Finding more datasets
  • Or working on the architecture maybe?
  • Using GANs to generate samples and make classifier stronger

Citations

@misc{milani2020data,
title={A Data Set and a Convolutional Model for Iconography Classification in Paintings},
author={Federico Milani and Piero Fraternali},
eprint={2010.11697},
archivePrefix={arXiv},
primaryClass={cs.CV},
year={2020}
}

RedhenLab's barnyard of projects

Owner
Rishab Mudliar
AKA Start At The Beginning.
Rishab Mudliar
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

MTM This is the official repository of the paper: Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Cla

ICTMCG 13 Sep 17, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
catch-22: CAnonical Time-series CHaracteristics

catch22 - CAnonical Time-series CHaracteristics About catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Ma

Carl H Lubba 229 Oct 21, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023