Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

Overview

MTM

This is the official repository of the paper:

Article Reranking by Memory-enhanced Key Sentence Matching for Detecting Previously Fact-checked Claims.

Qiang Sheng, Juan Cao, Xueyao Zhang, Xirong Li, and Lei Zhong.

Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)

PDF / Poster / Code / Chinese Dataset / Chinese Blog 1 / Chinese Blog 2

Datasets

There are two experimental datasets, including the Twitter Dataset, and the firstly proposed Weibo Dataset. Note that you can download the Weibo Dataset only after an "Application to Use the Chinese Dataset for Detecting Previously Fact-Checked Claim" has been submitted.

Code

Key Requirements

python==3.6.10
torch==1.6.0
torchvision==0.7.0
transformers==3.2.0

Usage for Weibo Dataset

After you download the dataset (the way to access is described here), move the FN_11934_filtered.json and DN_27505_filtered.json into the path MTM/dataset/Weibo/raw:

mkdir MTM/dataset/Weibo/raw
mv FN_11934_filtered.json MTM/dataset/Weibo/raw
mv DN_27505_filtered.json MTM/dataset/Weibo/raw

Preparation

Tokenize

cd MTM/preprocess/tokenize
sh run_weibo.sh

ROT

cd MTM/preprocess/ROT

You can refer to the run_weibo.sh, which includes three steps:

  1. Prepare RougeBert's Training data:

    python prepare_for_rouge.py --dataset Weibo --pretrained_model bert-base-chinese
    
  2. Training:

    CUDA_VISIBLE_DEVICES=0 python main.py --debug False \
    --dataset Weibo --pretrained_model bert-base-chinese --save './ckpts/Weibo' \
    --rouge_bert_encoder_layers 1 --rouge_bert_regularize 0.01 \
    --fp16 True
    

    then you can get ckpts/Weibo/[EPOCH].pt.

  3. Vectorize the claims and articles (get embeddings):

    CUDA_VISIBLE_DEVICES=0 python get_embeddings.py \
    --dataset Weibo --pretrained_model bert-base-chinese \
    --rouge_bert_model_file './ckpts/Weibo/[EPOCH].pt' \
    --batch_size 1024 --embeddings_type static
    

PMB

cd MTM/preprocess/PMB
  1. Prepare the clustering data:

    mkdir data
    mkdir data/Weibo
    

    and you can get data/Weibo/clustering_training_data_[TS_SMALL] <[TS_LARGE].pkl after running calculate_init_thresholds.ipynb.

  2. Kmeans clustering. You can refer to the run_weibo.sh:

    python kmeans_clustering.py --dataset Weibo --pretrained_model bert-base-chinese --clustering_data_file 'data/Weibo/clustering_training_data_[TS_SMALL]
         
          <[TS_LARGE].pkl'
    
         

    then you can get data/Weibo/kmeans_cluster_centers.npy.

Besides, it is available to see some cases of key sentences selection in key_sentences_selection_cases_Weibo.ipynb.

Training and Inferring

cd MTM/model
mkdir data
mkdir data/Weibo

You can refer to the run_weibo.sh:

CUDA_VISIBLE_DEVICES=0 python main.py --debug False --save 'ckpts/Weibo' \
--dataset 'Weibo' --pretrained_model 'bert-base-chinese' \
--rouge_bert_model_file '../preprocess/ROT/ckpts/Weibo/[EPOCH].pt' \
--memory_init_file '../preprocess/PMB/data/Weibo/kmeans_cluster_centers.npy' \
--claim_sentence_distance_file './data/Weibo/claim_sentence_distance.pkl' \
--pattern_sentence_distance_init_file './data/Weibo/pattern_sentence_distance_init.pkl' \
--memory_updated_step 0.3 --lambdaQ 0.6 --lambdaP 0.4 \
--selected_sentences 3 \
--lr 5e-6 --epochs 10 --batch_size 32 \

then the results and ranking reports will be saved in ckpts/Weibo.

Usage for Twitter Dataset

The description of the dataset can be seen at here.

Preparation

Tokenize

cd MTM/preprocess/tokenize
sh run_twitter.sh

ROT

cd MTM/preprocess/ROT

You can refer to the run_twitter.sh, which includes three steps:

  1. Prepare RougeBert's Training data:

    python prepare_for_rouge.py --dataset Twitter --pretrained_model bert-base-uncased
    
  2. Training:

    CUDA_VISIBLE_DEVICES=0 python main.py --debug False \
    --dataset Twitter --pretrained_model bert-base-uncased --save './ckpts/Twitter' \
    --rouge_bert_encoder_layers 1 --rouge_bert_regularize 0.05 \
    --fp16 True
    

    then you can get ckpts/Twitter/[EPOCH].pt.

  3. Vectorize the claims and articles (get embeddings):

    CUDA_VISIBLE_DEVICES=0 python get_embeddings.py \
    --dataset Twitter --pretrained_model bert-base-uncased \
    --rouge_bert_model_file './ckpts/Twitter/[EPOCH].pt' \
    --batch_size 1024 --embeddings_type static
    

PMB

cd MTM/preprocess/PMB
  1. Prepare the clustering data:

    mkdir data
    mkdir data/Twitter
    

    and you can get data/Twitter/clustering_training_data_[TS_SMALL] <[TS_LARGE].pkl after running calculate_init_thresholds.ipynb.

  2. Kmeans clustering. You can refer to the run_twitter.sh:

    python kmeans_clustering.py --dataset Twitter --pretrained_model bert-base-uncased --clustering_data_file 'data/Twitter/clustering_training_data_[TS_SMALL]
         
          <[TS_LARGE].pkl'
    
         

    then you can get data/Twitter/kmeans_cluster_centers.npy.

Besides, it is available to see some cases of key sentences selection in key_sentences_selection_cases_Twitter.ipynb.

Training and Inferring

cd MTM/model
mkdir data
mkdir data/Twitter

You can refer to the run_twitter.sh:

CUDA_VISIBLE_DEVICES=0 python main.py --debug False --save 'ckpts/Twitter' \
--dataset 'Twitter' --pretrained_model 'bert-base-uncased' \
--rouge_bert_model_file '../preprocess/ROT/ckpts/Twitter/[EPOCH].pt' \
--memory_init_file '../preprocess/PMB/data/Twitter/kmeans_cluster_centers.npy' \
--claim_sentence_distance_file './data/Twitter/claim_sentence_distance.pkl' \
--pattern_sentence_distance_init_file './data/Twitter/pattern_sentence_distance_init.pkl' \
--memory_updated_step 0.3 --lambdaQ 0.6 --lambdaP 0.4 \
--selected_sentences 5 \
--lr 1e-4 --epochs 10 --batch_size 16 \

then the results and ranking reports will be saved in ckpts/Twitter.

Citation

@inproceedings{MTM,
  author    = {Qiang Sheng and
               Juan Cao and
               Xueyao Zhang and
               Xirong Li and
               Lei Zhong},
  title     = {Article Reranking by Memory-Enhanced Key Sentence Matching for Detecting
               Previously Fact-Checked Claims},
  booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational
               Linguistics and the 11th International Joint Conference on Natural
               Language Processing, {ACL/IJCNLP} 2021},
  pages     = {5468--5481},
  publisher = {Association for Computational Linguistics},
  year      = {2021},
  url       = {https://doi.org/10.18653/v1/2021.acl-long.425},
  doi       = {10.18653/v1/2021.acl-long.425},
}
Owner
ICTMCG
Multimedia Computing Group, Institute of Computing Technology, Chinese Academy of Sciences. Our official account on WeChat: ICTMCG.
ICTMCG
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Ceph.

Project Aquarium Project Aquarium is a SUSE-sponsored open source project aiming at becoming an easy to use, rock solid storage appliance based on Cep

Aquarist Labs 73 Jul 21, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Å imkus 1 Apr 08, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023