Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Overview

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Paper

Description

Recent research has shown that numerous human-interpretable directions exist in the latent space of GANs. In this paper, we develop an automatic procedure for finding directions that lead to foreground-background image separation, and we use these directions to train an image segmentation model without human supervision. Our method is generator-agnostic, producing strong segmentation results with a wide range of different GAN architectures. Furthermore, by leveraging GANs pretrained on large datasets such as ImageNet, we are able to segment images from a range of domains without further training or finetuning. Evaluating our method on image segmentation benchmarks, we compare favorably to prior work while using neither human supervision nor access to the training data. Broadly, our results demonstrate that automatically extracting foreground-background structure from pretrained deep generative models can serve as a remarkably effective substitute for human supervision.

How to run

Dependencies

This code depends on pytorch-pretrained-gans, a repository I developed that exposes a standard interface for a variety of pretrained GANs. Install it with:

pip install git+https://github.com/lukemelas/pytorch-pretrained-gans

The pretrained weights for most GANs are downloaded automatically. For those that are not, I have provided scripts in that repository.

There are also some standard dependencies:

Install them with:

pip install hydra-core==1.1.0dev5 pytorch_lightning albumentations tqdm retry kornia

General Approach

Our unsupervised segmentation approach has two steps: (1) finding a good direction in latent space, and (2) training a segmentation model from data and masks that are generated using this direction.

In detail, this means:

  1. We use optimization/main.py finds a salient direction (or two salient directions) in the latent space of a given pretrained GAN that leads to foreground-background image separation.
  2. We use segmentation/main.py to train a standard segmentation network (a UNet) on generated data. The data can be generated in two ways: (1) you can generate the images on-the-fly during training, or (2) you can generate the images before training the segmentation model using segmentation/generate_and_save.py and then train the segmentation network afterward. The second approach is faster, but requires more disk space (~10GB for 1 million images). We will also provide a pre-generated dataset (coming soon).

Configuration and Logging

We use Hydra for configuration and Weights and Biases for logging. With Hydra, you can specify a config file (found in configs/) with --config-name=myconfig.yaml. You can also override the config from the command line by specifying the overriding arguments (without --). For example, you can enable Weights and Biases with wandb=True and you can name the run with name=myname.

The structure of the configs is as follows:

config
├── data_gen
│   ├── generated.yaml  # <- for generating data with 1 latent direction
│   ├── generated-dual.yaml   # <- for generating data with 2 latent directions
│   ├── generator  # <- different types of GANs for generating data
│   │   ├── bigbigan.yaml
│   │   ├── pretrainedbiggan.yaml
│   │   ├── selfconditionedgan.yaml
│   │   ├── studiogan.yaml
│   │   └── stylegan2.yaml 
│   └── saved.yaml  # <- for using pre-generated data
├── optimize.yaml  # <- for optimization
└── segment.yaml   # <- for segmentation

Code Structure

The code is structured as follows:

src
├── models  # <- segmentation model
│   ├── __init__.py
│   ├── latent_shift_model.py  # <- shifts direction in latent space
│   ├── unet_model.py  # <- segmentation model
│   └── unet_parts.py
├── config  # <- configuration, explained above
│   ├── ... 
├── datasets  # <- classes for loading datasets during segmentation/generation
│   ├── __init__.py
│   ├── gan_dataset.py  # <- for generating dataset
│   ├── saved_gan_dataset.py  # <- for pre-generated dataset
│   └── real_dataset.py  # <- for evaluation datasets (i.e. real images)
├── optimization
│   ├── main.py  # <- main script
│   └── utils.py  # <- helper functions
└── segmentation
    ├── generate_and_save.py  # <- for generating a dataset and saving it to disk
    ├── main.py  # <- main script, uses PyTorch Lightning 
    ├── metrics.py  # <- for mIoU/F-score calculations
    └── utils.py  # <- helper functions

Datasets

The datasets should have the following structure. You can easily add you own datasets or use only a subset of these datasets by modifying config/segment.yaml. You should specify your directory by modifying root in that file on line 19, or by passing data_seg.root=MY_DIR using the command line whenever you call python segmentation/main.py.

├── DUT_OMRON
│   ├── DUT-OMRON-image
│   │   └── ...
│   └── pixelwiseGT-new-PNG
│       └── ...
├── DUTS
│   ├── DUTS-TE
│   │   ├── DUTS-TE-Image
│   │   │   └── ...
│   │   └── DUTS-TE-Mask
│   │       └── ...
│   └── DUTS-TR
│       ├── DUTS-TR-Image
│       │   └── ...
│       └── DUTS-TR-Mask
│           └── ...
├── ECSSD
│   ├── ground_truth_mask
│   │   └── ...
│   └── images
│       └── ...
├── CUB_200_2011
│   ├── train_images
│   │   └── ...
│   ├── train_segmentations
│   │   └── ...
│   ├── test_images
│   │   └── ...
│   └── test_segmentations
│       └── ...
└── Flowers
    ├── train_images
    │   └── ...
    ├── train_segmentations
    │   └── ...
    ├── test_images
    │   └── ...
    └── test_segmentations
        └── ...

The datasets can be downloaded from:

Training

Before training, make sure you understand the general approach (explained above).

Note: All commands are called from within the src directory.

In the example commands below, we use BigBiGAN. You can easily switch out BigBiGAN for another model if you would like to.

Optimization

PYTHONPATH=. python optimization/main.py data_gen/generator=bigbigan name=NAME

This should take less than 5 minutes to run. The output will be saved in outputs/optimization/fixed-BigBiGAN-NAME/DATE/, with the final checkpoint in latest.pth.

Segmentation with precomputed generations

The recommended way of training is to generate the data first and train afterward. An example generation script would be:

PYTHONPATH=. python segmentation/generate_and_save.py \
name=NAME \
data_gen=generated \
data_gen/generator=bigbigan \
data_gen.checkpoint="YOUR_OPTIMIZATION_DIR_FROM_ABOVE/latest.pth" \
data_gen.save_dir="YOUR_OUTPUT_DIR" \
data_gen.save_size=1000000 \
data_gen.kwargs.batch_size=1 \
data_gen.kwargs.generation_batch_size=128

This will generate 1 million image-label pairs and save them to YOUR_OUTPUT_DIR/images. Note that YOUR_OUTPUT_DIR should be an absolute path, not a relative one, because Hydra changes the working directory. You may also want to tune the generation_batch_size to maximize GPU utilization on your machine. It takes around 3-4 hours to generate 1 million images on a single V100 GPU.

Once you have generated data, you can train a segmentation model:

PYTHONPATH=. python segmentation/main.py \
name=NAME \
data_gen=saved \
data_gen.data.root="YOUR_OUTPUT_DIR_FROM_ABOVE"

It takes around 3 hours on 1 GPU to complete 18000 iterations, by which point the model has converged (in fact you can probably get away with fewer steps, I would guess around ~5000).

Segmentation with on-the-fly generations

Alternatively, you can generate data while training the segmentation model. An example script would be:

PYTHONPATH=. python segmentation/main.py \
name=NAME \
data_gen=generated \
data_gen/generator=bigbigan \
data_gen.checkpoint="YOUR_OPTIMIZATION_DIR_FROM_ABOVE/latest.pth" \
data_gen.kwargs.generation_batch_size=128

Evaluation

To evaluate, set the train argument to False. For example:

python train.py \
name="eval" \
train=False \
eval_checkpoint=${checkpoint} \
data_seg.root=${DATASETS_DIR} 

Pretrained models

  • ... are coming soon!

Available GANs

It should be possible to use any GAN from pytorch-pretrained-gans, including:

Citation

@inproceedings{melaskyriazi2021finding,
  author    = {Melas-Kyriazi, Luke and Rupprecht, Christian and Laina, Iro and Vedaldi, Andrea},
  title     = {Finding an Unsupervised Image Segmenter in each of your Deep Generative Models},
  booktitle = arxiv,
  year      = {2021}
}
You might also like...
pytorch implementation of
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

pyhsmm - library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations. The pytorch implementation of  DG-Font: Deformable Generative Networks for Unsupervised Font Generation
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

Minimal PyTorch implementation of Generative Latent Optimization from the paper
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

DeepCAD: A Deep Generative Network for Computer-Aided Design Models
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

Comments
  • pip install git+https://github.com/lukemelas/pytorch-pretrained-gans

    pip install git+https://github.com/lukemelas/pytorch-pretrained-gans

    Hi, is the repo in the pytorch-pretrained-gans step public or is that the right URL for it? I got prompted for username and password when I tried the pip install git+ and don't see the repo at that URL: https://github.com/lukemelas/pytorch-pretrained-gans (Get 404)

    Thanks.

    opened by ModMorph 2
  • Help producing results with the StyleGAN models

    Help producing results with the StyleGAN models

    Hi there!

    I'm having trouble producing meaningful results on StyleGAN2 on AFHQ. I've been using the default setup and hyperparameters. After 50 iterations (with the default batch size of 32) I get visualisations that look initially promising: (https://i.imgur.com/eR79Wyd.png). But as training progresses, and indeed when it reaches 300 iterations, these are the visualisation results: https://i.imgur.com/36zhBzT.png.

    I've tried playing with the learning rate, and the number of iterations with no success yet. Did you have tips here or ideas as to what might be going wrong here?

    Thanks! James.

    opened by james-oldfield 1
  • bug

    bug

    Firstly, I ran PYTHONPATH=. python optimization/main.py data_gen/generator=bigbigan name=NAME. And then, I ran PYTHONPATH=. python segmentation/generate_and_save.py \ name=NAME \ data_gen=generated \ data_gen/generator=bigbigan \ data_gen.checkpoint="YOUR_OPTIMIZATION_DIR_FROM_ABOVE/latest.pth" \ data_gen.save_dir="YOUR_OUTPUT_DIR" \ data_gen.save_size=1000000 \ data_gen.kwargs.batch_size=1 \ data_gen.kwargs.generation_batch_size=128 When I ran PYTHONPATH=. python segmentation/main.py \ name=NAME \ data_gen=saved \ data_gen.data.root="YOUR_OUTPUT_DIR_FROM_ABOVE" An error occurred. The error is: Traceback (most recent call last): File "segmentation/main.py", line 98, in main kwargs = dict(images_dir=_cfg.images_dir, labels_dir=_cfg.labels_dir, omegaconf.errors.InterpolationResolutionError: KeyError raised while resolving interpolation: "Environment variable '/raid/name/gaochengli/segmentation/src/images' not found" full_key: data_seg.data[0].images_dir object_type=dict According to what you wrote, I modified the root (config/segment.yaml on line 19). Just like this "/raid/name/gaochengli/segmentation/src/images". And the folder contains all data sets,whose name is images. I wonder why such a mistake happened.

    opened by Lee-Gao 1
Owner
Luke Melas-Kyriazi
I'm student at Harvard University studying mathematics and computer science, always open to collaborate on interesting projects!
Luke Melas-Kyriazi
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

Yutong Zhang 4 Sep 08, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
113 Nov 28, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022