A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

Related tags

Deep LearningADClust
Overview

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

Overview

Clustering analysis is widely utilized in single-cell RNA-sequencing (scRNA-seq) data to discover cell heterogeneity and cell states. While several clustering methods have been developed for scRNA-seq analysis, the clustering results of these methods heavily rely on the number of clusters as prior information. How-ever, it is not easy to know the exact number of cell types, and experienced determination is not always accurate. Here, we have developed ADClust, an auto deep embedding clustering method for scRNA-seq data, which can simultaneously and accurately estimate the number of clusters and cluster cells. Specifically, ADClust first obtain low-dimensional representation through pre-trained autoencoder, and use the representations to cluster cells into micro-clusters. Then, the micro-clusters are compared in be-tween by Dip-test, a statistical test for unimodality, and similar micro-clusters are merged through a designed clustering loss func-tion. This process continues until convergence. By tested on elev-en real scRNA-seq datasets, ADClust outperformed existing meth-ods in terms of both clustering performance and the ability to es-timate the number of clusters. More importantly, our model pro-vides high speed and scalability on large datasets.

(Variational) gcn

Requirements

Please ensure that all the libraries below are successfully installed:

  • torch 1.7.1
  • numpy 1.19.2
  • scipy 1.7.3
  • scanpy 1.8.1

Installation

You need to compile the dip.c file using a C compiler, and add the path of generated library dip.so into LD_LIBRARY_PATH. For this following commands need to be executed:


gcc -fPIC -shared -o dip.so dip.c

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./dip.so

Run ADClust

Run on the normalized example data.


python ADClust.py --name Baron_human_normalized

output

The clustering cell labels will be stored in the dir ourtput /dataname_pred.csv.

scRNA-seq Datasets

All datasets can be downloaded at Here

All datasets will be downloaded to: ADClust /data/

Citation

Please cite our paper:


@article{zengys,
  title={A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data},
  author={Yuansong Zeng, Zhuoyi Wei, Fengqi, Zhong,  Zixiang Pan, Yutong Lu, Yuedong Yang},
  journal={biorxiv},
  year={2021}
 publisher={Cold Spring Harbor Laboratory}
}

Owner
AI-Biomed @NSCC-gz
AI-Biomed @NSCC-gz
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
LIAO Shuiying 6 Dec 01, 2022
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI G

Robin Henry 99 Dec 12, 2022
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022