This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Related tags

Deep LearningDsCML
Overview

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation

This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

1. Paper

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation
IEEE International Conference on Computer Vision (ICCV 2021)

If you find it helpful to your research, please cite as follows:

@inproceedings{peng2021sparse,
  title={Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation},
  author={Peng, Duo and Lei, Yinjie and Li, Wen and Zhang, Pingping and Guo, Yulan},
  booktitle={Proceedings of the International Conference on Computer Vision (ICCV)},
  year={2021},
  publisher={IEEE}
}

2. Preparation

You can follow the next steps to install the requairmented environment. This code is mainly modified from xMUDA, you can also refer to its README if the installation isn't going well.

2.1 Setup a Conda environment:

First, you are recommended to create a new Conda environment named nuscenes.

conda create --name nuscenes python=3.7

You can enable the virtual environment using:

conda activate nuscenes 

To deactivate the virtual environment, use:

source deactivate

2.2 Install nuscenes-devkit:

Download the devkit to your computer, decompress and enter it.

Add the python-sdk directory to your PYTHONPATH environmental variable, by adding the following to your ~/.bashrc:

export PYTHONPATH="${PYTHONPATH}:$HOME/nuscenes-devkit/python-sdk"

Using cmd (make sure the environment "nuscenes" is activated) to install the base environment:

pip install -r setup/requirements.txt

Setup environment variable:

export NUSCENES="/data/sets/nuscenes"

Using the cmd to finally install it:

pip install nuscenes-devkit

After the above steps, the devikit is installed, for any question you can refer to devikit_installation_help

If you meet the error with "pycocotools", you can try following steps:

(1) Install Cython in your environment:

sudo apt-get installl Cython
pip install cython

(2) Download the cocoapi to your computer, decompress and enter it.

(3) Using cmd to enter the path under "PythonAPI", type:

make

(4) Type:

pip install pycocotools

2.3 Install SparseConveNet:

Download the SparseConveNet to your computer, decompress, enter and develop it:

cd SparseConvNet/
bash develop.sh

3. Datasets Preparation

For Dataset preprocessing, the code and steps are highly borrowed from xMUDA, you can see more preprocessing details from this Link. We summarize the preprocessing as follows:

3.1 NuScenes

Download Nuscenes from NuScenes website and extract it.

Before training, you need to perform preprocessing to generate the data first. Please edit the script DsCML/data/nuscenes/preprocess.py as follows and then run it.

root_dir should point to the root directory of the NuScenes dataset

out_dir should point to the desired output directory to store the pickle files

3.2 A2D2

Download the A2D2 Semantic Segmentation dataset and Sensor Configuration from the Audi website

Similar to NuScenes preprocessing, please save all points that project into the front camera image as well as the segmentation labels to a pickle file.

Please edit the script DsCML/data/a2d2/preprocess.py as follows and then run it.

root_dir should point to the root directory of the A2D2 dataset

out_dir should point to the desired output directory to store the undistorted images and pickle files.

It should be set differently than the root_dir to prevent overwriting of images.

3.3 SemanticKITTI

Download the files from the SemanticKITTI website and additionally the color data from the Kitti Odometry website. Extract everything into the same folder.

Please edit the script DsCML/data/semantic_kitti/preprocess.py as follows and then run it.

root_dir should point to the root directory of the SemanticKITTI dataset out_dir should point to the desired output directory to store the pickle files

4. Usage

You can training the DsCML by using cmd or IDE such as Pycharm.

python DsCML/train_DsCML.py --cfg=../configs/nuscenes/day_night/xmuda.yaml

The output will be written to /home/<user>/workspace by default. You can change the path OUTPUT_DIR in the config file in (e.g. configs/nuscenes/day_night/xmuda.yaml)

You can start the trainings on the other UDA scenarios (USA/Singapore and A2D2/SemanticKITTI):

python DsCML/train_DsCML.py --cfg=../configs/nuscenes/usa_singapore/xmuda.yaml
python DsCML/train_DsCML.py --cfg=../configs/a2d2_semantic_kitti/xmuda.yaml

5. Results

We present several qualitative results reported in our paper.

Update Status

The code of CMAL is updated. (2021-10-04)

Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 May 27, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021