Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

Overview

DART

Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners.

Environment

  • [email protected]
  • Use pip install -r requirements.txt to install dependencies.
  • wandb account is required if the user wants to search for best hyper-parameter combinations.

Data source

  • 16-shot GLUE dataset from LM-BFF.
  • Generated data consists of 5 random splits (13/21/42/87/100) for a task, each has 16 samples.

How to run

  • To run across each 5 splits in a task, use run.py:
    • In the arguments, encoder="inner" is the method proposed in the paper where verbalizers are other trainable tokens; encoder="manual" means verbalizers are selected fixed tokens; encoder="lstm" refers to the P-Tuning method.
$ python run.py -h
usage: run.py [-h] [--encoder {manual,lstm,inner,inner2}] [--task TASK]
              [--num_splits NUM_SPLITS] [--repeat REPEAT] [--load_manual]
              [--extra_mask_rate EXTRA_MASK_RATE]
              [--output_dir_suffix OUTPUT_DIR_SUFFIX]

optional arguments:
  -h, --help            show this help message and exit
  --encoder {manual,lstm,inner,inner2}
  --task TASK
  --num_splits NUM_SPLITS
  --repeat REPEAT
  --load_manual
  --extra_mask_rate EXTRA_MASK_RATE
  --output_dir_suffix OUTPUT_DIR_SUFFIX, -o OUTPUT_DIR_SUFFIX
  • To train and evaluate on a single split with details recorded, use inference.py.
    • Before running, [task_name, label_list, prompt_type] should be configured in the code.
    • prompt_type="none" refers to fixed verbalizer training, while "inner" refers to the method proposed in the paper. ("inner2" is deprecated 2-stage training)
  • To find optimal hyper-parameters for each task-split and reproduce our result, please use sweep.py:
    • Please refer to documentation for WandB for more details.
$ python sweep.py -h
usage: sweep.py [-h]
                [--task {SST-2,sst-5,mr,cr,mpqa,subj,trec,CoLA,MNLI,MNLI-mm,SNLI,QNLI,RTE-glue,MRPC,QQP}]
                [--encoder {none,mlp,lstm,inner,inner2}]
                [--seed_split {13,21,42,87,100} [{13,21,42,87,100} ...]]
                [--batch_size {4,8,16,24,32} [{4,8,16,24,32} ...]]
                [--sweep_id SWEEP_ID]

optional arguments:
  -h, --help            show this help message and exit
  --task {SST-2,sst-5,mr,cr,mpqa,subj,trec,CoLA,MNLI,MNLI-mm,SNLI,QNLI,RTE-glue,MRPC,QQP}
  --encoder {none,mlp,lstm,inner,inner2}
  --seed_split {13,21,42,87,100} [{13,21,42,87,100} ...]
  --batch_size {4,8,16,24,32} [{4,8,16,24,32} ...]
  --sweep_id SWEEP_ID
  • To train and evaluate with more customized configurations, use cli.py.
  • To analyze and visualize the results come from inference.py, use visualize.py and visualize_word_emb.py.

How to Cite

@article{DBLP:journals/corr/abs-2108-13161,
  author    = {Ningyu Zhang and
               Luoqiu Li and
               Xiang Chen and
               Shumin Deng and
               Zhen Bi and
               Chuanqi Tan and
               Fei Huang and
               Huajun Chen},
  title     = {Differentiable Prompt Makes Pre-trained Language Models Better Few-shot
               Learners},
  journal   = {CoRR},
  volume    = {abs/2108.13161},
  year      = {2021},
  url       = {https://arxiv.org/abs/2108.13161},
  eprinttype = {arXiv},
  eprint    = {2108.13161},
  timestamp = {Thu, 13 Jan 2022 17:33:17 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2108-13161.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
Owner
ZJUNLP
NLP Group of Knowledge Engine Lab at Zhejiang University
ZJUNLP
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can ! 🤡

Customers Segmentation using PHP and Rubix ML PHP Library Can we do Customers Segmentation using PHP and Unsupervized Machine Learning ? Yes we can !

Mickaël Andrieu 11 Oct 08, 2022
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
A project for developing transformer-based models for clinical relation extraction

Clinical Relation Extration with Transformers Aim This package is developed for researchers easily to use state-of-the-art transformers models for ext

uf-hobi-informatics-lab 101 Dec 19, 2022