Unbiased Learning To Rank Algorithms (ULTRA)

Overview
logo

Unbiased Learning to Rank Algorithms (ULTRA)

Python 3.6 Documentation Status Build Status codecov License follow on Twitter

🔥 News: A TensorFlow version of this package can be found in ULTRA.

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels. With the unified data processing pipeline, ULTRA supports multiple unbiased learning-to-rank algorithms, online learning-to-rank algorithms, neural learning-to-rank models, as well as different methods to use and simulate noisy labels (e.g., clicks) to train and test different algorithms/ranking models. A user-friendly documentation can be found here.

Get Started

Create virtual environment (optional):

pip install --user virtualenv
~/.local/bin/virtualenv -p python3 ./venv
source venv/bin/activate

Install ULTRA from the source:

git clone https://github.com/ULTR-Community/ULTRA_pytorch.git
cd ULTRA
make init

Run toy example:

bash example/toy/offline_exp_pipeline.sh

Structure

structure

Input Layers

  1. ClickSimulationFeed: this is the input layer that generate synthetic clicks on fixed ranked lists to feed the learning algorithm.

  2. DeterministicOnlineSimulationFeed: this is the input layer that first create ranked lists by sorting documents according to the current ranking model, and then generate synthetic clicks on the lists to feed the learning algorithm. It can do result interleaving if required by the learning algorithm.

  3. StochasticOnlineSimulationFeed: this is the input layer that first create ranked lists by sampling documents based on their scores in the current ranking model and the Plackett-Luce distribution, and then generate synthetic clicks on the lists to feed the learning algorithm. It can do result interleaving if required by the learning algorithm.

  4. DirectLabelFeed: this is the input layer that directly feed the true relevance labels of each documents to the learning algorithm.

Learning Algorithms

  1. NA: this model is an implementation of the naive algorithm that directly train models with input labels (e.g., clicks).

  2. DLA: this is an implementation of the Dual Learning Algorithm in Unbiased Learning to Rank with Unbiased Propensity Estimation.

  3. IPW: this model is an implementation of the Inverse Propensity Weighting algorithms in Learning to Rank with Selection Bias in Personal Search and Unbiased Learning-to-Rank with Biased Feedback

  4. REM: this model is an implementation of the regression-based EM algorithm in Position bias estimation for unbiased learning to rank in personal search

  5. PD: this model is an implementation of the pairwise debiasing algorithm in Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank Algorithm.

  6. DBGD: this model is an implementation of the Dual Bandit Gradient Descent algorithm in Interactively optimizing information retrieval systems as a dueling bandits problem

  7. MGD: this model is an implementation of the Multileave Gradient Descent in Multileave Gradient Descent for Fast Online Learning to Rank

  8. NSGD: this model is an implementation of the Null Space Gradient Descent algorithm in Efficient Exploration of Gradient Space for Online Learning to Rank

  9. PDGD: this model is an implementation of the Pairwise Differentiable Gradient Descent algorithm in Differentiable unbiased online learning to rank

Ranking Models

  1. Linear: this is a linear ranking algorithm that compute ranking scores with a linear function.

  2. DNN: this is neural ranking algorithm that compute ranking scores with a multi-layer perceptron network (with non-linear activation functions).

  3. DLCM: this is an implementation of the Deep Listwise Context Model in Learning a Deep Listwise Context Model for Ranking Refinement (TODO).

  4. GSF: this is an implementation of the Groupwise Scoring Function in Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks (TODO).

  5. SetRank: this is an implementation of the SetRank model in SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval (TODO).

Supported Evaluation Metrics

  1. MRR: the Mean Reciprocal Rank.

  2. ERR: the Expected Reciprocal Rank from Expected reciprocal rank for graded relevance.

  3. ARP: the Average Relevance Position.

  4. NDCG: the Normalized Discounted Cumulative Gain.

  5. DCG: the Discounted Cumulative Gain.

  6. Precision: the Precision.

  7. MAP: the Mean Average Precision.

  8. Ordered_Pair_Accuracy: the percentage of correctedly ordered pair.

Click Simulation Example

Create click models for click simulations

python ultra/utils/click_models.py pbm 0.1 1 4 1.0 example/ClickModel

* The output is a json file containing the click mode that could be used for click simulation. More details could be found in the code.

(Optional) Estimate examination propensity with result randomization

python ultra/utils/propensity_estimator.py example/ClickModel/pbm_0.1_1.0_4_1.0.json 
   
     example/PropensityEstimator/

   

* The output is a json file containing the estimated examination propensity (used for IPW). DATA_DIR is the directory for the prepared data created by ./libsvm_tools/prepare_exp_data_with_svmrank.py. More details could be found in the code.

Citation

If you use ULTRA in your research, please use the following BibTex entry.

@misc{tran2021ultra,
      title={ULTRA: An Unbiased Learning To Rank Algorithm Toolbox}, 
      author={Anh Tran and Tao Yang and Qingyao Ai},
      year={2021},
      eprint={2108.05073},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}

@article{10.1145/3439861,
author = {Ai, Qingyao and Yang, Tao and Wang, Huazheng and Mao, Jiaxin},
title = {Unbiased Learning to Rank: Online or Offline?},
year = {2021},
issue_date = {February 2021},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {39},
number = {2},
issn = {1046-8188},
url = {https://doi.org/10.1145/3439861},
doi = {10.1145/3439861},
journal = {ACM Trans. Inf. Syst.},
month = feb,
articleno = {21},
numpages = {29},
keywords = {unbiased learning, online learning, Learning to rank}
}

Development Team

​ ​ ​ ​

​ QingyaoAi
​ Qingyao Ai ​

Core Dev
ASST PROF, Univ. of Utah

​
​ anhtran1010
​ Anh Tran ​

Core Dev
Ph.D., Univ. of Utah

​
Taosheng-ty
Tao Yang ​

Core Dev
Ph.D., Univ. of Utah

​
​ huazhengwang
Huazheng Wang

Core Dev
Ph.D., Univ. of Virginia

​
​ defaultstr
​ Jiaxin Mao

Core Dev
ASST PROF, Renmin Univ.

​

Contribution

Please read the Contributing Guide before creating a pull request.

Project Organizers

  • Qingyao Ai
    • School of Computing, University of Utah
    • Homepage

License

Apache-2.0

Copyright (c) 2020-present, Qingyao Ai (QingyaoAi) "# Pytorch_ULTRA"

Owner
Facilitating the design, comparison and sharing of unbiased and online learning to rank algorithms.
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
High-Fidelity Pluralistic Image Completion with Transformers (ICCV 2021)

Image Completion Transformer (ICT) Project Page | Paper (ArXiv) | Pre-trained Models | Supplemental Material This repository is the official pytorch i

Ziyu Wan 243 Jan 03, 2023
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
A curated list of neural rendering resources.

Awesome-of-Neural-Rendering A curated list of neural rendering and related resources. Please feel free to pull requests or open an issue to add papers

Zhiwei ZHANG 43 Dec 09, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022