A Numba-based two-point correlation function calculator using a grid decomposition

Overview

numba-2pcf

tests

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Aside from the 2PCF calculation, the particle_grid module is both simple and fast and may be useful on its own as a way to partition particle sets in 3D.

Installation

$ git clone https://github.com/lgarrison/numba-2pcf.git
$ cd numba-2pcf
$ python -m pip install -e .

Example

from numba_2pcf.cf import numba_2pcf
import numpy as np

rng = np.random.default_rng(123)
N = 10**6
box = 2.
pos = rng.random((N,3), dtype=np.float32)*box

res = numba_2pcf(pos, box, Rmax=0.05, nbin=10)
res.pprint_all()
        rmin                 rmax                 rmid                    xi            npairs 
-------------------- -------------------- -------------------- ----------------------- --------
                 0.0 0.005000000074505806 0.002500000037252903   -0.004519257448573177    65154
0.005000000074505806 0.010000000149011612  0.00750000011175871   0.0020113763064291135   459070
0.010000000149011612  0.01500000022351742 0.012500000186264515    0.000984359247434119  1244770
 0.01500000022351742 0.020000000298023225 0.017500000260770324  -6.616896085054336e-06  2421626
0.020000000298023225  0.02500000037252903 0.022500000335276125  0.00019365366488166558  3993210
 0.02500000037252903  0.03000000044703484 0.027500000409781934   5.769329601057471e-05  5956274
 0.03000000044703484  0.03500000052154064 0.032500000484287736   0.0006815801672250821  8317788
 0.03500000052154064  0.04000000059604645 0.037500000558793545    2.04711840243732e-05 11061240
 0.04000000059604645  0.04500000067055226 0.042500000633299354   9.313641918828885e-05 14203926
 0.04500000067055226  0.05000000074505806  0.04750000070780516 -0.00011690771042793813 17734818

Performance

The goal of this project is not to provide the absolute best performance that given hardware can produce, but it is a goal to provide as good performance as Numba will let us reach (while keeping the code readable). So we pay special attention to things like dtype (use float32 particle inputs when possible!), parallelization, and some early-exit conditions (when we know a pair can't fall in any bin).

As a demonstration that this code provides passably good performance, here's a dummy test of 107 unclustered data points in a 2 Gpc/h box (so number density 1.2e-3), with Rmax=200 Mpc/h and bin width of 1 Mpc/h:

from numba_2pcf.cf import numba_2pcf
import numpy as np

rng = np.random.default_rng(123)
N = 10**6
box = 2000
pos = rng.random((N,3), dtype=np.float32)*box

%timeit numba_2pcf(pos, box, Rmax=150, nbin=150, corrfunc=False, nthread=24)  # 3.5 s
%timeit numba_2pcf(pos, box, Rmax=150, nbin=150, corrfunc=True, nthread=24)  # 1.3 s

So within a factor of 3 of Corrfunc, and we aren't even exploiting the symmetry of the autocorrelation (i.e. we count every pair twice). Not bad!

Testing Against Corrfunc

The code is tested against Corrfunc. And actually, the numba_2pcf() function takes a flag corrfunc=True that calls Corrfunc instead of the Numba implementation to make such testing even easier.

Details

numba_2pcf works a lot like Corrfunc, or any other grid-based 2PCF code: the 3D volume is divided into a grid of cells at least Rmax in size, where Rmax is the maximum radius of the correlation function measurement. Then, we know all valid particle pairs must be in neighboring cells. So the task is simply to loop through each cell in the grid, pairing it with each of its 26 neighbors (plus itself). We parallelize over cell pairs, and add up all the pair counts across threads at the end.

This grid decomposition prunes distant pairwise comparisons, so even though the runtime still formally scales as O(N2), it makes the 2PCF tractable for many realistic problems in cosmology and large-scale structure.

A numba implementation isn't likely to beat Corrfunc on speed, but numba can still be fast enough to be useful (especially when the computation parallelizes well). The idea is that this code provides a "fast enough" parallel implementation while still being highly readable --- the 2PCF implementation is about 150 lines of code, and the gridding scheme 100 lines.

Branches

The particle-jackknife branch contains an implementation of an idea for computing the xi(r) variance based on the variance of the per-particle xi(r) measurements. It doesn't seem to be measuring the right thing, but the code is left for posterity.

Acknowledgments

This repo was generated from @DFM's Cookiecutter Template. Thanks, DFM!

Owner
Lehman Garrison
Flatiron Research Fellow at the Center for Computational Astrophysics
Lehman Garrison
The official repository for ROOT: analyzing, storing and visualizing big data, scientifically

About The ROOT system provides a set of OO frameworks with all the functionality needed to handle and analyze large amounts of data in a very efficien

ROOT 2k Dec 29, 2022
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
A notebook to analyze Amazon Recommendation Review Dataset.

Amazon Recommendation Review Dataset Analyzer A notebook to analyze Amazon Recommendation Review Dataset. Features Calculates distinct user count, dis

isleki 3 Aug 22, 2022
The official pytorch implementation of ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias

ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias Introduction | Updates | Usage | Results&Pretrained Models | Statement | Intr

104 Nov 27, 2022
Bamboolib - a GUI for pandas DataFrames

Community repository of bamboolib bamboolib is joining forces with Databricks. For more information, please read our announcement. Please note that th

Tobias Krabel 863 Jan 08, 2023
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
Analysis scripts for QG equations

qg-edgeofchaos Analysis scripts for QG equations FIle/Folder Structure eigensolvers.py - Spectral and finite-difference solvers for Rossby wave eigenf

Norman Cao 2 Sep 27, 2022
peptides.py is a pure-Python package to compute common descriptors for protein sequences

peptides.py Physicochemical properties and indices for amino-acid sequences. 🗺️ Overview peptides.py is a pure-Python package to compute common descr

Martin Larralde 32 Dec 31, 2022
Average time per match by division

HW_02 Unzip matches.rar to access .json files for matches. Get an API key to access their data at: https://developer.riotgames.com/ Average time per m

11 Jan 07, 2022
A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.

Realtime Financial Market Data Visualization and Analysis Introduction This repo shows my project about real-time stock data pipeline. All the code is

6 Sep 07, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
:truck: Agile Data Preparation Workflows made easy with dask, cudf, dask_cudf and pyspark

To launch a live notebook server to test optimus using binder or Colab, click on one of the following badges: Optimus is the missing framework to prof

Iron 1.3k Dec 30, 2022
BasstatPL is a package for performing different tabulations and calculations for descriptive statistics.

BasstatPL is a package for performing different tabulations and calculations for descriptive statistics. It provides: Frequency table constr

Angel Chavez 1 Oct 31, 2021
Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

WeRateDogs Twitter Data from 2015 to 2017 Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data Table of Contents Introduction Proj

Keenan Cooper 1 Jan 12, 2022
Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles

Correlation-Study-Climate-Change-EV-Adoption Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles I

Jonathan Feng 1 Jan 03, 2022
Code for the DH project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World"

Damast This repository contains code developed for the digital humanities project "Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval

University of Stuttgart Visualization Research Center 2 Jul 01, 2022
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
Scraping and analysis of leetcode-compensations page.

Leetcode compensations report Scraping and analysis of leetcode-compensations page.

utsav 96 Jan 01, 2023
Desafio proposto pela IGTI em seu bootcamp de Cloud Data Engineer

Desafio Modulo 4 - Cloud Data Engineer Bootcamp - IGTI Objetivos Criar infraestrutura como cĂłdigo Utuilizando um cluster Kubernetes na Azure IngestĂŁo

Otacilio Filho 4 Jan 23, 2022
DaCe is a parallel programming framework that takes code in Python/NumPy and other programming languages

aCe - Data-Centric Parallel Programming Decoupling domain science from performance optimization. DaCe is a parallel programming framework that takes c

SPCL 330 Dec 30, 2022