A Numba-based two-point correlation function calculator using a grid decomposition

Overview

numba-2pcf

tests

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Aside from the 2PCF calculation, the particle_grid module is both simple and fast and may be useful on its own as a way to partition particle sets in 3D.

Installation

$ git clone https://github.com/lgarrison/numba-2pcf.git
$ cd numba-2pcf
$ python -m pip install -e .

Example

from numba_2pcf.cf import numba_2pcf
import numpy as np

rng = np.random.default_rng(123)
N = 10**6
box = 2.
pos = rng.random((N,3), dtype=np.float32)*box

res = numba_2pcf(pos, box, Rmax=0.05, nbin=10)
res.pprint_all()
        rmin                 rmax                 rmid                    xi            npairs 
-------------------- -------------------- -------------------- ----------------------- --------
                 0.0 0.005000000074505806 0.002500000037252903   -0.004519257448573177    65154
0.005000000074505806 0.010000000149011612  0.00750000011175871   0.0020113763064291135   459070
0.010000000149011612  0.01500000022351742 0.012500000186264515    0.000984359247434119  1244770
 0.01500000022351742 0.020000000298023225 0.017500000260770324  -6.616896085054336e-06  2421626
0.020000000298023225  0.02500000037252903 0.022500000335276125  0.00019365366488166558  3993210
 0.02500000037252903  0.03000000044703484 0.027500000409781934   5.769329601057471e-05  5956274
 0.03000000044703484  0.03500000052154064 0.032500000484287736   0.0006815801672250821  8317788
 0.03500000052154064  0.04000000059604645 0.037500000558793545    2.04711840243732e-05 11061240
 0.04000000059604645  0.04500000067055226 0.042500000633299354   9.313641918828885e-05 14203926
 0.04500000067055226  0.05000000074505806  0.04750000070780516 -0.00011690771042793813 17734818

Performance

The goal of this project is not to provide the absolute best performance that given hardware can produce, but it is a goal to provide as good performance as Numba will let us reach (while keeping the code readable). So we pay special attention to things like dtype (use float32 particle inputs when possible!), parallelization, and some early-exit conditions (when we know a pair can't fall in any bin).

As a demonstration that this code provides passably good performance, here's a dummy test of 107 unclustered data points in a 2 Gpc/h box (so number density 1.2e-3), with Rmax=200 Mpc/h and bin width of 1 Mpc/h:

from numba_2pcf.cf import numba_2pcf
import numpy as np

rng = np.random.default_rng(123)
N = 10**6
box = 2000
pos = rng.random((N,3), dtype=np.float32)*box

%timeit numba_2pcf(pos, box, Rmax=150, nbin=150, corrfunc=False, nthread=24)  # 3.5 s
%timeit numba_2pcf(pos, box, Rmax=150, nbin=150, corrfunc=True, nthread=24)  # 1.3 s

So within a factor of 3 of Corrfunc, and we aren't even exploiting the symmetry of the autocorrelation (i.e. we count every pair twice). Not bad!

Testing Against Corrfunc

The code is tested against Corrfunc. And actually, the numba_2pcf() function takes a flag corrfunc=True that calls Corrfunc instead of the Numba implementation to make such testing even easier.

Details

numba_2pcf works a lot like Corrfunc, or any other grid-based 2PCF code: the 3D volume is divided into a grid of cells at least Rmax in size, where Rmax is the maximum radius of the correlation function measurement. Then, we know all valid particle pairs must be in neighboring cells. So the task is simply to loop through each cell in the grid, pairing it with each of its 26 neighbors (plus itself). We parallelize over cell pairs, and add up all the pair counts across threads at the end.

This grid decomposition prunes distant pairwise comparisons, so even though the runtime still formally scales as O(N2), it makes the 2PCF tractable for many realistic problems in cosmology and large-scale structure.

A numba implementation isn't likely to beat Corrfunc on speed, but numba can still be fast enough to be useful (especially when the computation parallelizes well). The idea is that this code provides a "fast enough" parallel implementation while still being highly readable --- the 2PCF implementation is about 150 lines of code, and the gridding scheme 100 lines.

Branches

The particle-jackknife branch contains an implementation of an idea for computing the xi(r) variance based on the variance of the per-particle xi(r) measurements. It doesn't seem to be measuring the right thing, but the code is left for posterity.

Acknowledgments

This repo was generated from @DFM's Cookiecutter Template. Thanks, DFM!

Owner
Lehman Garrison
Flatiron Research Fellow at the Center for Computational Astrophysics
Lehman Garrison
Convert tables stored as images to an usable .csv file

Convert an image of numbers to a .csv file This Python program aims to convert images of array numbers to corresponding .csv files. It uses OpenCV for

711 Dec 26, 2022
Geospatial data-science analysis on reasons behind delay in Grab ride-share services

Grab x Pulis Detailed analysis done to investigate possible reasons for delay in Grab services for NUS Data Analytics Competition 2022, to be found in

Keng Hwee 6 Jun 07, 2022
VevestaX is an open source Python package for ML Engineers and Data Scientists.

VevestaX Track failed and successful experiments as well as features. VevestaX is an open source Python package for ML Engineers and Data Scientists.

Vevesta 24 Dec 14, 2022
Very useful and necessary functions that simplify working with data

Additional-function-for-pandas Very useful and necessary functions that simplify working with data random_fill_nan(module_name, nan) - Replaces all sp

Alexander Goldian 2 Dec 02, 2021
VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

VHub - An API that permits uploading of vulnerability datasets and return of the serialized data

André Rodrigues 2 Feb 14, 2022
MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020] by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wa

112 Dec 28, 2022
ASTR 302: Python for Astronomy (Winter '22)

ASTR 302, Winter 2022, University of Washington: Python for Astronomy Mario Jurić Location When: 2:30-3:50, Monday & Wednesday, Winter quarter 2022 Wh

UW ASTR 302: Python for Astronomy 4 Jan 12, 2022
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022
This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

This is an example of how to automate Ridit Analysis for a dataset with large amount of questions and many item attributes

Ishan Hegde 1 Nov 17, 2021
Single-Cell Analysis in Python. Scales to >1M cells.

Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc

Theis Lab 1.4k Jan 05, 2023
Data collection, enhancement, and metrics calculation.

l3_data_collection Data collection, enhancement, and metrics calculation. Summary Repository containing code for QuantDAO's JDT data collection task.

Ruiwyn 3 Dec 23, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities. This is aimed at those looking to get into the field of D

Joachim 1 Dec 26, 2021
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather

Tuplex 791 Jan 04, 2023
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
A DSL for data-driven computational pipelines

"Dataflow variables are spectacularly expressive in concurrent programming" Henri E. Bal , Jennifer G. Steiner , Andrew S. Tanenbaum Quick overview Ne

1.9k Jan 03, 2023
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022