PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Related tags

Deep LearningGMFN
Overview

Gated Multiple Feedback Network for Image Super-Resolution

This repository contains the PyTorch implementation for the proposed GMFN [arXiv].

The framework of our proposed GMFN. The colored arrows among different time steps denote the multiple feedback connections. The high-level information carried by them helps low-level features become more representative.

Demo

Clone SRFBN as the backbone and satisfy its requirements.

Test

  1. Copy ./networks/gmfn_arch.py into SRFBN_CVPR19/networks/

  2. Download the pre-trained models from Google driver or Baidu Netdisk, unzip and place them into SRFBN_CVPR19/models.

  3. Copy ./options/test/ to SRFBN_CVPR19/options/test/.

  4. Run commands cd SRFBN_CVPR19 and one of followings for evaluation on Set5:

python test.py -opt options/test/test_GMFN_x2.json
python test.py -opt options/test/test_GMFN_x3.json
python test.py -opt options/test/test_GMFN_x4.json
  1. Finally, PSNR/SSIM values for Set5 are shown on your screen, you can find the reconstruction images in ./results.

To test GMFN on other standard SR benchmarks or your own images, please refer to the instruction in SRFBN.

Train

  1. Prepare the training set according to this (1-3).
  2. Modify ./options/train/train_GMFN.json by following the instructions in ./options/train/README.md.
  3. Run commands:
cd SRFBN_CVPR19
python train.py -opt options/train/train_GNFN.json
  1. You can monitor the training process in ./experiments.

  2. Finally, you can follow the test pipeline to evaluate the model trained by yourself.

Performance

Quantitative Results

Quantitative evaluation under scale factors x2, x3 and x4. The best performance is shown in bold and the second best performance is underlined.

More Qualitative Results (x4)

Acknowledgment

If you find our work useful in your research or publications, please consider citing:

@inproceedings{li2019gmfn,
    author = {Li, Qilei and Li, Zhen and Lu, Lu and Jeon, Gwanggil and Liu, Kai and Yang, Xiaomin},
    title = {Gated Multiple Feedback Network for Image Super-Resolution},
    booktitle = {The British Machine Vision Conference (BMVC)},
    year = {2019}
}

@inproceedings{li2019srfbn,
    author = {Li, Zhen and Yang, Jinglei and Liu, Zheng and Yang, Xiaomin and Jeon, Gwanggil and Wu, Wei},
    title = {Feedback Network for Image Super-Resolution},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year= {2019}
}
You might also like...
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

Pytorch implementation for  our ICCV 2021 paper
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

This is the official pytorch implementation for our ICCV 2021 paper
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation for our NeurIPS 2021 Spotlight paper
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Comments
  • Approximately how many epoches will reach the results in the paper (4x SR result)

    Approximately how many epoches will reach the results in the paper (4x SR result)

    Hi, liqilei After I have run about 700 epoches, the reult on val set is 32.41(highest result). I want to know if my training process seems to be problematic? How long did you reach 32.47 of SRFBN when you were training? How long does it take to reach 32.70? Thank you.

    opened by Senwang98 7
  • train error size not match

    train error size not match

    CUDA_VISIBLE_DEVICES=0 python train.py -opt options/train/train_GMFN.json I use celeba dataset train

    ===> Training Epoch: [1/1000]... Learning Rate: 0.000200 Epoch: [1/1000]: 0%| | 0/251718 [00:00<?, ?it/s] Traceback (most recent call last): File "train.py", line 131, in main() File "train.py", line 69, in main iter_loss = solver.train_step() File "/exp_sr/SRFBN/solvers/SRSolver.py", line 104, in train_step loss_steps = [self.criterion_pix(sr, split_HR) for sr in outputs] File "/exp_sr/SRFBN/solvers/SRSolver.py", line 104, in loss_steps = [self.criterion_pix(sr, split_HR) for sr in outputs] File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/modules/module.py", line 477, in call result = self.forward(*input, **kwargs) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/modules/loss.py", line 87, in forward return F.l1_loss(input, target, reduction=self.reduction) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/functional.py", line 1702, in l1_loss input, target, reduction) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/functional.py", line 1674, in _pointwise_loss return lambd_optimized(input, target, reduction) RuntimeError: input and target shapes do not match: input [16 x 3 x 192 x 192], target [16 x 3 x 48 x 48] at /pytorch/aten/src/THCUNN/generic/AbsCriterion.cu:12

    opened by yja1 3
  • Not an Issue

    Not an Issue

    Hey @Paper99,

    Thanks for sharing your code! I wonder if it is possible to help with visualizing featuer-maps as you did in your paper figure 4.

    Thanks

    opened by Auth0rM0rgan 1
  • My training result with scale = 2

    My training result with scale = 2

    Hi, After I have trained the DIV2k, I get the final result(use best_ckp.pth to test):

    set5:38.16/0.9610
    set14:33.91/0.9203
    urban100:32.81/0.9349
    B100:32.30/0.9011
    manga109:39.01/0.9776
    

    It seems much lower than that in your paper.

    opened by Senwang98 6
Owner
Qilei Li
Qilei Li
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Retrieval.

Targeted Trojan-Horse Attacks on Language-based Image Retrieval Source code of our TTH paper: Targeted Trojan-Horse Attacks on Language-based Image Re

fine 7 Aug 23, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022