PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Related tags

Deep LearningGMFN
Overview

Gated Multiple Feedback Network for Image Super-Resolution

This repository contains the PyTorch implementation for the proposed GMFN [arXiv].

The framework of our proposed GMFN. The colored arrows among different time steps denote the multiple feedback connections. The high-level information carried by them helps low-level features become more representative.

Demo

Clone SRFBN as the backbone and satisfy its requirements.

Test

  1. Copy ./networks/gmfn_arch.py into SRFBN_CVPR19/networks/

  2. Download the pre-trained models from Google driver or Baidu Netdisk, unzip and place them into SRFBN_CVPR19/models.

  3. Copy ./options/test/ to SRFBN_CVPR19/options/test/.

  4. Run commands cd SRFBN_CVPR19 and one of followings for evaluation on Set5:

python test.py -opt options/test/test_GMFN_x2.json
python test.py -opt options/test/test_GMFN_x3.json
python test.py -opt options/test/test_GMFN_x4.json
  1. Finally, PSNR/SSIM values for Set5 are shown on your screen, you can find the reconstruction images in ./results.

To test GMFN on other standard SR benchmarks or your own images, please refer to the instruction in SRFBN.

Train

  1. Prepare the training set according to this (1-3).
  2. Modify ./options/train/train_GMFN.json by following the instructions in ./options/train/README.md.
  3. Run commands:
cd SRFBN_CVPR19
python train.py -opt options/train/train_GNFN.json
  1. You can monitor the training process in ./experiments.

  2. Finally, you can follow the test pipeline to evaluate the model trained by yourself.

Performance

Quantitative Results

Quantitative evaluation under scale factors x2, x3 and x4. The best performance is shown in bold and the second best performance is underlined.

More Qualitative Results (x4)

Acknowledgment

If you find our work useful in your research or publications, please consider citing:

@inproceedings{li2019gmfn,
    author = {Li, Qilei and Li, Zhen and Lu, Lu and Jeon, Gwanggil and Liu, Kai and Yang, Xiaomin},
    title = {Gated Multiple Feedback Network for Image Super-Resolution},
    booktitle = {The British Machine Vision Conference (BMVC)},
    year = {2019}
}

@inproceedings{li2019srfbn,
    author = {Li, Zhen and Yang, Jinglei and Liu, Zheng and Yang, Xiaomin and Jeon, Gwanggil and Wu, Wei},
    title = {Feedback Network for Image Super-Resolution},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year= {2019}
}
You might also like...
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

Pytorch implementation for  our ICCV 2021 paper
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

This is the official pytorch implementation for our ICCV 2021 paper
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation for our NeurIPS 2021 Spotlight paper
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Comments
  • Approximately how many epoches will reach the results in the paper (4x SR result)

    Approximately how many epoches will reach the results in the paper (4x SR result)

    Hi, liqilei After I have run about 700 epoches, the reult on val set is 32.41(highest result). I want to know if my training process seems to be problematic? How long did you reach 32.47 of SRFBN when you were training? How long does it take to reach 32.70? Thank you.

    opened by Senwang98 7
  • train error size not match

    train error size not match

    CUDA_VISIBLE_DEVICES=0 python train.py -opt options/train/train_GMFN.json I use celeba dataset train

    ===> Training Epoch: [1/1000]... Learning Rate: 0.000200 Epoch: [1/1000]: 0%| | 0/251718 [00:00<?, ?it/s] Traceback (most recent call last): File "train.py", line 131, in main() File "train.py", line 69, in main iter_loss = solver.train_step() File "/exp_sr/SRFBN/solvers/SRSolver.py", line 104, in train_step loss_steps = [self.criterion_pix(sr, split_HR) for sr in outputs] File "/exp_sr/SRFBN/solvers/SRSolver.py", line 104, in loss_steps = [self.criterion_pix(sr, split_HR) for sr in outputs] File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/modules/module.py", line 477, in call result = self.forward(*input, **kwargs) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/modules/loss.py", line 87, in forward return F.l1_loss(input, target, reduction=self.reduction) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/functional.py", line 1702, in l1_loss input, target, reduction) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/functional.py", line 1674, in _pointwise_loss return lambd_optimized(input, target, reduction) RuntimeError: input and target shapes do not match: input [16 x 3 x 192 x 192], target [16 x 3 x 48 x 48] at /pytorch/aten/src/THCUNN/generic/AbsCriterion.cu:12

    opened by yja1 3
  • Not an Issue

    Not an Issue

    Hey @Paper99,

    Thanks for sharing your code! I wonder if it is possible to help with visualizing featuer-maps as you did in your paper figure 4.

    Thanks

    opened by Auth0rM0rgan 1
  • My training result with scale = 2

    My training result with scale = 2

    Hi, After I have trained the DIV2k, I get the final result(use best_ckp.pth to test):

    set5:38.16/0.9610
    set14:33.91/0.9203
    urban100:32.81/0.9349
    B100:32.30/0.9011
    manga109:39.01/0.9776
    

    It seems much lower than that in your paper.

    opened by Senwang98 6
Owner
Qilei Li
Qilei Li
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
Using pytorch to implement unet network for liver image segmentation.

Using pytorch to implement unet network for liver image segmentation.

zxq 1 Dec 17, 2021
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022