PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Related tags

Deep LearningCoMON
Overview

Conference Python 3.6 Supports Habitat Lab

Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents

This is a PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Project Webpage: https://shivanshpatel35.github.io/comon/

CoMON Task

In CoMON, an episode involves two heterogeneous agents -- a disembodied agent with access to oracle top-down map of the environment and an embodied agent which navigates and interacts with the environment. The two agents communicate and collaborate to perform the MultiON task.

Communication Mechanisms

Architecture Overview

Installing dependencies:

This code is tested on python 3.6.10, pytorch v1.4.0 and CUDA V9.1.85.

Install pytorch from https://pytorch.org/ according to your machine configuration.

This code uses older versions of habitat-sim and habitat-lab. Install them by running the following commands:

Installing habitat-sim:

git clone https://github.com/facebookresearch/habitat-sim.git
cd habitat-sim 
git checkout ae6ba1cdc772f7a5dedd31cbf9a5b77f6de3ff0f
pip install -r requirements.txt; 
python setup.py install --headless # (for headless machines with GPU)
python setup.py install # (for machines with display attached)

Installing habitat-lab:

git clone --branch stable https://github.com/facebookresearch/habitat-lab.git
cd habitat-lab
git checkout 676e593b953e2f0530f307bc17b6de66cff2e867
pip install -e .

For installation issues in habitat, feel free to raise an issue in this repository, or in the corresponding habitat repository.

Setup

Clone the repository and install the requirements:

git clone https://github.com/saimwani/comon
cd comon
pip install -r requirements.txt

Downloading data and checkpoints

To evaluate pre-trained models and train new models, you will need to download the MultiON dataset, including objects inserted into the scenes, and model checkpoints for CoMON. Running download_data.sh from the root directory (CoMON/) will download the data and extract it to appropriate directories. Note that you are still required to download Matterport3D scenes after you run the script (see section on Download Matterport3D scenes below).

bash download_multion_data.sh

Download multiON dataset

You do not need to complete this step if you have successfully run the download_data.sh script above.

Run the following to download multiON dataset and cached oracle occupancy maps:

mkdir data
cd data
mkdir datasets
cd datasets
wget -O multinav.zip "http://aspis.cmpt.sfu.ca/projects/multion/multinav.zip"
unzip multinav.zip && rm multinav.zip
cd ../
wget -O objects.zip "http://aspis.cmpt.sfu.ca/projects/multion/objects.zip"
unzip objects.zip && rm objects.zip
wget -O default.phys_scene_config.json "http://aspis.cmpt.sfu.ca/projects/multion/default.phys_scene_config.json"
cd ../
mkdir oracle_maps
cd oracle_maps
wget -O map300.pickle "http://aspis.cmpt.sfu.ca/projects/multion/map300.pickle"
cd ../

Download Matterport3D scenes

The Matterport scene dataset and multiON dataset should be placed in data folder under the root directory (multiON/) in the following format:

CoMON/
  data/
    scene_datasets/
      mp3d/
        1LXtFkjw3qL/
          1LXtFkjw3qL.glb
          1LXtFkjw3qL.navmesh
          ...
    datasets/
      multinav/
        3_ON/
          train/
            ...
          val/
            val.json.gz
        2_ON
          ...
        1_ON
          ...

Download Matterport3D data for Habitat by following the instructions mentioned here.

Usage

Pre-trained models

You do not need to complete this step if you have successfully run the download_data.sh script above.

mkdir model_checkpoints

Download a model checkpoint for Unstructured communication (U-Comm) or Structured communication (S-Comm) setup as shown below.

Agent Run
U-Comm wget -O model_checkpoints/ckpt.1.pth "http://aspis.cmpt.sfu.ca/projects/comon/model_checkpoints/un_struc/ckpt.1.pth"
S-Comm wget -O model_checkpoints/ckpt.1.pth "http://aspis.cmpt.sfu.ca/projects/comon/model_checkpoints/struc/ckpt.1.pth"

Evaluation

To evaluate a pretrained S-Comm agent, run this from the root folder (CoMON/):

python habitat_baselines/run.py --exp-config habitat_baselines/config/multinav/comon.yaml --comm-type struc --run-type eval

For U-Comm setup, replace struc with un-struc.

Average evaluation metrics are printed on the console when evaluation ends. Detailed metrics are placed in tb/eval/metrics directory.

Training

For training an S-Comm agent, run this from the root directory:

python habitat_baselines/run.py --exp-config habitat_baselines/config/multinav/comon.yaml --comm-type struc --run-type train

For U-Comm, replace struc with un-struc.

Citation

Shivansh Patel*, Saim Wani*, Unnat Jain*, Alexander Schwing, Svetlana Lazebnik, Manolis Savva, Angel X. Chang. Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents In ICCV 2021. PDF

Bibtex

@inproceedings{patel2021interpretation,
  Author = {Shivansh Patel and Saim Wani and Unnat Jain and Alexander Schwing and 
  Svetlana Lazebnik and  Manolis Savva and Angel X. Chang},
  Title = {Interpretation of Emergent Communication 
  in Heterogeneous Collaborative Embodied Agents},
  Booktitle = {ICCV},
  Year = {2021}
  }

Acknowledgements

This repository is built upon Habitat Lab.

Owner
Saim Wani
Saim Wani
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
[NeurIPS 2021] Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples | ⛰️⚠️

Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples This repository is the official implementation of "Tow

Sungyoon Lee 4 Jul 12, 2022
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

Yang Song 818 Jan 06, 2023
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
Reproduces ResNet-V3 with pytorch

ResNeXt.pytorch Reproduces ResNet-V3 (Aggregated Residual Transformations for Deep Neural Networks) with pytorch. Tried on pytorch 1.6 Trains on Cifar

Pau Rodriguez 481 Dec 23, 2022
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
Bytedance Inc. 2.5k Jan 06, 2023
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022