The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

Overview

mini-AlphaStar

Introduction

The mini-AlphaStar (mini-AS, or mAS) project is a mini-scale version (non-official) of the AlphaStar (AS). AlphaStar is the intelligent AI proposed by DeepMind to play StarCraft II.

The "mini-scale" means making the original AS's hyper-parameters adjustable so that mini-AS can be trained and running on a small scale. E.g., we can train this model in a single commercial server machine.

We referred to the "Occam's Razor Principle" when designing the mini-AS": simple is sound. Therefore, we build mini-AS from scratch. Unless the function significantly impacts speed and performance, we shall omit it.

Meanwhile, we also try not to use too many dependency packages so that mini-AS should only depend on the PyTorch. In this way, we simplify the learning cost of the mini-AS and make the architecture of mini-AS relatively easy.

The Chinese shows a simple readme in Chinese.

Below 4 GIFs are mini-AS' trained performance on Simple64, supervised learning on 50 expert replays.

Left: At the start of the game. Right: In the middle period of the game.

Left: The agent's 1st attack. Right: The agent's 2nd Attack.

Update

This release is the "v_1.07" version. In this version, we give an agent which grows from 0.016 to 0.5667 win rate against the level-2 built-in bot training by reinforcement learning. Other improvements are shown below:

  • Use mimic_forward to replace forward in "rl_unroll", which increase the training accuracy;
  • Make RL training supports multi-GPU now;
  • Make RL training supports multi-process training based on multi-GPU now;
  • Use new architecture for RL loss, which reduces 86% GPU memory;
  • Use new architecture for RL to increase the sampling speed by 6x faster;
  • Validate UPGO and V-trace loss again;
  • By a "multi-process plus multi-thread" training, increase the sampling speed more by 197%;
  • Fix the GPU memory leak and reduce the CPU memory leak;
  • Increase the RL training win rate (without units loss) on level-2 to 0.57!

Hints

Warning: SC2 is extremely difficult, and AlphaStar is also very complex. Even our project is a mini-AlphaStar, it has almost the similar technologies as AS, and the training resource also costs very high. We can hardly train mini-AS on a laptop. The recommended way is to use a commercial server with a GPU card and enough large memory and disk space. For someone interested in this project for the first time, we recommend you collect (star) this project and devolve deeply into researching it when you have enough free time and training resources.

Location

We store the codes and show videos in two places.

Codes location Result video location Usage
Github Youtube for global users
Gitee Bilibili for users in China

Contents

The table below shows the corresponding packages in the project.

Packages Content
alphastarmini.core.arch deep neural architecture
alphastarmini.core.sl supervised learning
alphastarmini.core.rl reinforcement learning
alphastarmini.core.ma multi-agent league traning
alphastarmini.lib lib functions
alphastarmini.third third party functions

Requirements

PyTorch >= 1.5, others please see requirements.txt.

Install

The SCRIPT Guide gives some commands to install PyTorch by conda (this will automatically install CUDA and cudnn, which is convenient).

E.g., like (to install PyTorch 1.5 with accompanied CUDA and cudnn):

conda create -n th_1_5 python=3.7 pytorch=1.5 -c pytorch

Next, activate the conda environment, like:

conda activate th_1_5

Then you can install other python packages by pip, e.g., the command in the below line:

pip install -r requirements.txt

Usage

After you have done all requirements, run the below python file to run the program:

python run.py

You may use comments and uncomments in "run.py" to select the training process you want.

The USAGE Guide provides answers to some problems and questions.

You should follow the following instructions to get results similar and/or better than the provided gifs on the main page.

The processing sequences can be summarised as the following:

  1. Transform replays: download the replays for training, then use the script in mAS to transform the replays to trainable data;
  2. Supervised learning: use the trainable data to supervise learning an initial model;
  3. Evaluate SL model: the trained SL model should be evaluated on the RL environment to make sure it behaves right;
  4. Reinforcement learning: use the trained SL model to do reinforcement learning in the SC environment, seeing the win rate starts growing.

We give detailed descriptions below.

Transofrm replays

In supervised learning, you first need to download SC2 replays.

The REPLAY Guide shows a guide to download these SC2 replays.

The ZHIHU Guide provides Chinese users who are not convenient to use Battle.net (outside China) a guide to download replays.

After downloading replays, you should move the replays to "./data/Replays/filtered_replays_1" (you can change the name in transform_replay_data.py).

Then use transform_replay_data.py to transform these replays to pickles or tensors (you can change the output type in the code of that file).

You don't need to run the transform_replay_data.py directly. Only run "run.py" is OK. Make the run.py has the following code

    # from alphastarmini.core.sl import transform_replay_data
    # transform_replay_data.test(on_server=P.on_server)

uncommented. Then you can directly run "run.py".

Note: To get the effect of the trained agent in the gifs, use the replays in Useful-Big-Resources. These replays are generatedy by our experts, to get an agent having the ability to win the built-in bot.

Supervised learning

After getting the trainable data (we use tensor data). Make the run.py has the following code

    # from alphastarmini.core.sl import sl_train_by_tensor
    # sl_train_by_tensor.test(on_server=P.on_server)

uncommented. Then you can directly run "run.py" to do supervised learning.

The default learning rate is 1e-4, and the training epochs should best be 10 (more epochs may cause the training effect overfitting).

From the v_1.05 version, we start to support multi-GPU supervised learning training for mini-AS, improving the training speed. The way to use multi-GPU training is straightforward, as follows:

python run_multi-gpu.py

Multi-GPU training has some unstable factors (caused because of PyTorch). If you find your multi-GPU training has training instability errors, please switch to the single-GPU training.

We currently support four types of supervised training, which all reside in the "alphastarmini.core.sl" package.

File Content
sl_train_by_pickle.py pickle (data not preprocessed) training: Slow, but need small disk space.
sl_train_by_tensor.py tensor (data preprocessed) training: Fast, but cost colossal disk space.
sl_multi_gpu_by_pickle.py multi-GPU, pickle training: It has a requirement need for large shared memory.
sl_multi_gpu_by_tensor.py multi-GPU, tensor training: It needs both large memory and large shared memory.

You can use the load_pickle.py to transform the generated pickles (in "./data/replay_data") to tensors (in "./data/replay_data_tensor").

Note: from v_1.06, we still recommend using single-GPU training. We provide the new training ways in the single-GPU type. This is due to multi-GPU training cost so much memory.

Evaluate SL model

After getting the supervised learning model. We should test the performance of the model in the SC2 environment this is due to there is domain shift from SL data and RL environment.

Make the run.py has the following code

    # from alphastarmini.core.rl import rl_eval_sl
    # rl_eval_sl.test(on_server=P.on_server)

uncommented. Then you can directly run "run.py" to do an evaluation of the SL model.

The evaluation is similar to RL training but the learning is closed and the running is single-thread and single-process, to make the randomness due to multi-thread not affect the evaluation.

Reinforcement learning

After making sure the supervised learning model is OK and suitable for RL training. We do RL training based on the learned supervised learning model.

Make the run.py has the following code

    # from alphastarmini.core.rl import rl_vs_inner_bot_mp
    # rl_vs_inner_bot_mp.test(on_server=P.on_server, replay_path=P.replay_path)

uncommented. Then you can directly run "run.py" to do reinforcement learning.

Note, this training will use a multi-process plus multi-thread RL training (to accelerate the learning speed), so make sure to run this codes on a high-performance computer.

E.g., we run 15 processes, and each process has 2 actor threads and 1 learner thread in a commercial server. If your computer is not strong as that, reduce the parallel and thread nums.

The learning rate should be very small (below 1e-5, because you are training on an initially trained model), and the training iterations should be as long as best (more training iterations can reduce the unstable of RL training).

If you find the training is not as like as you imagine, please open an issue to ask us or discuss with us (though we can not make sure to respond to it in time or there is a solution to every problem).

Results

Here are some illustration figures of the SL training process below:

SL training process

We can see the loss (one primary loss and six argument losses) fall quickly.

The trained behavior of the agents can be seen in the gifs on this page.

A more detailed illustration of the experiments (such as the effects of the different hyper-parameters) will be provided in our later paper.

History

The HISTORY is the historical introduction of the previous versions of mini-AS.

Citing

If you find our repository useful, please cite our project or the below technical report:

@misc{liu2021mAS,
  author = {Ruo{-}Ze Liu and Wenhai Wang and Yang Yu and Tong Lu},
  title = {mini-AlphaStar},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/liuruoze/mini-AlphaStar}},
}

The An Introduction of mini-AlphaStar is a technical report introducing the mini-AS (not full version).

@article{liu2021mASreport,
  author    = {Ruo{-}Ze Liu and
               Wenhai Wang and
               Yanjie Shen and
               Zhiqi Li and
               Yang Yu and
               Tong Lu},
  title     = {An Introduction of mini-AlphaStar},
  journal   = {CoRR},
  volume    = {abs/2104.06890},
  year      = {2021},
}

Rethinking

The Rethinking of AlphaStar is our thinking of the advantages and disadvantages of AlphaStar.

Paper

We will give a paper (which is now under peer-review) that may be available in the future, presenting detailed experiments and evaluations using the mini-AS.

Owner
Ruo-Ze Liu
Think deep, work hard.
Ruo-Ze Liu
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
Image Completion with Deep Learning in TensorFlow

Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and

Brandon Amos 1.3k Dec 23, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees This repository is being continuously updated, please stay tuned! Any code con

86 Dec 28, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022