The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

Overview

mini-AlphaStar

Introduction

The mini-AlphaStar (mini-AS, or mAS) project is a mini-scale version (non-official) of the AlphaStar (AS). AlphaStar is the intelligent AI proposed by DeepMind to play StarCraft II.

The "mini-scale" means making the original AS's hyper-parameters adjustable so that mini-AS can be trained and running on a small scale. E.g., we can train this model in a single commercial server machine.

We referred to the "Occam's Razor Principle" when designing the mini-AS": simple is sound. Therefore, we build mini-AS from scratch. Unless the function significantly impacts speed and performance, we shall omit it.

Meanwhile, we also try not to use too many dependency packages so that mini-AS should only depend on the PyTorch. In this way, we simplify the learning cost of the mini-AS and make the architecture of mini-AS relatively easy.

The Chinese shows a simple readme in Chinese.

Below 4 GIFs are mini-AS' trained performance on Simple64, supervised learning on 50 expert replays.

Left: At the start of the game. Right: In the middle period of the game.

Left: The agent's 1st attack. Right: The agent's 2nd Attack.

Update

This release is the "v_1.07" version. In this version, we give an agent which grows from 0.016 to 0.5667 win rate against the level-2 built-in bot training by reinforcement learning. Other improvements are shown below:

  • Use mimic_forward to replace forward in "rl_unroll", which increase the training accuracy;
  • Make RL training supports multi-GPU now;
  • Make RL training supports multi-process training based on multi-GPU now;
  • Use new architecture for RL loss, which reduces 86% GPU memory;
  • Use new architecture for RL to increase the sampling speed by 6x faster;
  • Validate UPGO and V-trace loss again;
  • By a "multi-process plus multi-thread" training, increase the sampling speed more by 197%;
  • Fix the GPU memory leak and reduce the CPU memory leak;
  • Increase the RL training win rate (without units loss) on level-2 to 0.57!

Hints

Warning: SC2 is extremely difficult, and AlphaStar is also very complex. Even our project is a mini-AlphaStar, it has almost the similar technologies as AS, and the training resource also costs very high. We can hardly train mini-AS on a laptop. The recommended way is to use a commercial server with a GPU card and enough large memory and disk space. For someone interested in this project for the first time, we recommend you collect (star) this project and devolve deeply into researching it when you have enough free time and training resources.

Location

We store the codes and show videos in two places.

Codes location Result video location Usage
Github Youtube for global users
Gitee Bilibili for users in China

Contents

The table below shows the corresponding packages in the project.

Packages Content
alphastarmini.core.arch deep neural architecture
alphastarmini.core.sl supervised learning
alphastarmini.core.rl reinforcement learning
alphastarmini.core.ma multi-agent league traning
alphastarmini.lib lib functions
alphastarmini.third third party functions

Requirements

PyTorch >= 1.5, others please see requirements.txt.

Install

The SCRIPT Guide gives some commands to install PyTorch by conda (this will automatically install CUDA and cudnn, which is convenient).

E.g., like (to install PyTorch 1.5 with accompanied CUDA and cudnn):

conda create -n th_1_5 python=3.7 pytorch=1.5 -c pytorch

Next, activate the conda environment, like:

conda activate th_1_5

Then you can install other python packages by pip, e.g., the command in the below line:

pip install -r requirements.txt

Usage

After you have done all requirements, run the below python file to run the program:

python run.py

You may use comments and uncomments in "run.py" to select the training process you want.

The USAGE Guide provides answers to some problems and questions.

You should follow the following instructions to get results similar and/or better than the provided gifs on the main page.

The processing sequences can be summarised as the following:

  1. Transform replays: download the replays for training, then use the script in mAS to transform the replays to trainable data;
  2. Supervised learning: use the trainable data to supervise learning an initial model;
  3. Evaluate SL model: the trained SL model should be evaluated on the RL environment to make sure it behaves right;
  4. Reinforcement learning: use the trained SL model to do reinforcement learning in the SC environment, seeing the win rate starts growing.

We give detailed descriptions below.

Transofrm replays

In supervised learning, you first need to download SC2 replays.

The REPLAY Guide shows a guide to download these SC2 replays.

The ZHIHU Guide provides Chinese users who are not convenient to use Battle.net (outside China) a guide to download replays.

After downloading replays, you should move the replays to "./data/Replays/filtered_replays_1" (you can change the name in transform_replay_data.py).

Then use transform_replay_data.py to transform these replays to pickles or tensors (you can change the output type in the code of that file).

You don't need to run the transform_replay_data.py directly. Only run "run.py" is OK. Make the run.py has the following code

    # from alphastarmini.core.sl import transform_replay_data
    # transform_replay_data.test(on_server=P.on_server)

uncommented. Then you can directly run "run.py".

Note: To get the effect of the trained agent in the gifs, use the replays in Useful-Big-Resources. These replays are generatedy by our experts, to get an agent having the ability to win the built-in bot.

Supervised learning

After getting the trainable data (we use tensor data). Make the run.py has the following code

    # from alphastarmini.core.sl import sl_train_by_tensor
    # sl_train_by_tensor.test(on_server=P.on_server)

uncommented. Then you can directly run "run.py" to do supervised learning.

The default learning rate is 1e-4, and the training epochs should best be 10 (more epochs may cause the training effect overfitting).

From the v_1.05 version, we start to support multi-GPU supervised learning training for mini-AS, improving the training speed. The way to use multi-GPU training is straightforward, as follows:

python run_multi-gpu.py

Multi-GPU training has some unstable factors (caused because of PyTorch). If you find your multi-GPU training has training instability errors, please switch to the single-GPU training.

We currently support four types of supervised training, which all reside in the "alphastarmini.core.sl" package.

File Content
sl_train_by_pickle.py pickle (data not preprocessed) training: Slow, but need small disk space.
sl_train_by_tensor.py tensor (data preprocessed) training: Fast, but cost colossal disk space.
sl_multi_gpu_by_pickle.py multi-GPU, pickle training: It has a requirement need for large shared memory.
sl_multi_gpu_by_tensor.py multi-GPU, tensor training: It needs both large memory and large shared memory.

You can use the load_pickle.py to transform the generated pickles (in "./data/replay_data") to tensors (in "./data/replay_data_tensor").

Note: from v_1.06, we still recommend using single-GPU training. We provide the new training ways in the single-GPU type. This is due to multi-GPU training cost so much memory.

Evaluate SL model

After getting the supervised learning model. We should test the performance of the model in the SC2 environment this is due to there is domain shift from SL data and RL environment.

Make the run.py has the following code

    # from alphastarmini.core.rl import rl_eval_sl
    # rl_eval_sl.test(on_server=P.on_server)

uncommented. Then you can directly run "run.py" to do an evaluation of the SL model.

The evaluation is similar to RL training but the learning is closed and the running is single-thread and single-process, to make the randomness due to multi-thread not affect the evaluation.

Reinforcement learning

After making sure the supervised learning model is OK and suitable for RL training. We do RL training based on the learned supervised learning model.

Make the run.py has the following code

    # from alphastarmini.core.rl import rl_vs_inner_bot_mp
    # rl_vs_inner_bot_mp.test(on_server=P.on_server, replay_path=P.replay_path)

uncommented. Then you can directly run "run.py" to do reinforcement learning.

Note, this training will use a multi-process plus multi-thread RL training (to accelerate the learning speed), so make sure to run this codes on a high-performance computer.

E.g., we run 15 processes, and each process has 2 actor threads and 1 learner thread in a commercial server. If your computer is not strong as that, reduce the parallel and thread nums.

The learning rate should be very small (below 1e-5, because you are training on an initially trained model), and the training iterations should be as long as best (more training iterations can reduce the unstable of RL training).

If you find the training is not as like as you imagine, please open an issue to ask us or discuss with us (though we can not make sure to respond to it in time or there is a solution to every problem).

Results

Here are some illustration figures of the SL training process below:

SL training process

We can see the loss (one primary loss and six argument losses) fall quickly.

The trained behavior of the agents can be seen in the gifs on this page.

A more detailed illustration of the experiments (such as the effects of the different hyper-parameters) will be provided in our later paper.

History

The HISTORY is the historical introduction of the previous versions of mini-AS.

Citing

If you find our repository useful, please cite our project or the below technical report:

@misc{liu2021mAS,
  author = {Ruo{-}Ze Liu and Wenhai Wang and Yang Yu and Tong Lu},
  title = {mini-AlphaStar},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/liuruoze/mini-AlphaStar}},
}

The An Introduction of mini-AlphaStar is a technical report introducing the mini-AS (not full version).

@article{liu2021mASreport,
  author    = {Ruo{-}Ze Liu and
               Wenhai Wang and
               Yanjie Shen and
               Zhiqi Li and
               Yang Yu and
               Tong Lu},
  title     = {An Introduction of mini-AlphaStar},
  journal   = {CoRR},
  volume    = {abs/2104.06890},
  year      = {2021},
}

Rethinking

The Rethinking of AlphaStar is our thinking of the advantages and disadvantages of AlphaStar.

Paper

We will give a paper (which is now under peer-review) that may be available in the future, presenting detailed experiments and evaluations using the mini-AS.

Owner
Ruo-Ze Liu
Think deep, work hard.
Ruo-Ze Liu
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023