Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Overview

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021]

This is the official pytorch implementation of BCNet built on the open-source detectron2.

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers
Lei Ke, Yu-Wing Tai, Chi-Keung Tang
CVPR 2021

  • Two-stage instance segmentation with state-of-the-art performance.
  • Image formation as composition of two overlapping layers.
  • Bilayer decoupling for the occluder and occludee.
  • Efficacy on both the FCOS and Faster R-CNN detectors.

Under construction. Our code and pretrained model will be fully released in two months.

Visualization of Occluded Objects

Qualitative instance segmentation results of our BCNet, using ResNet-101-FPN and Faster R-CNN detector. The bottom row visualizes squared heatmap of contour and mask predictions by the two GCN layers for the occluder and occludee in the same ROI region specified by the red bounding box, which also makes the final segmentation result of BCNet more explainable than previous methods.

Qualitative instance segmentation results of our BCNet, using ResNet-101-FPN and FCOS detector.

Results on COCO test-dev

(Check Table 8 of the paper for full results, all methods are trained on COCO train2017)

Detector Backbone Method mAP(mask)
Faster R-CNN ResNet-50 FPN Mask R-CNN 34.2
Faster R-CNN ResNet-50 FPN MS R-CNN 35.6
Faster R-CNN ResNet-50 FPN PointRend 36.3
Faster R-CNN ResNet-50 FPN PANet 36.6
Faster R-CNN ResNet-50 FPN BCNet 38.4
Faster R-CNN ResNet-101 FPN Mask R-CNN 36.1
Faster R-CNN ResNet-101 FPN BMask R-CNN 37.7
Faster R-CNN ResNet-101 FPN MS R-CNN 38.3
Faster R-CNN ResNet-101 FPN BCNet 39.8, [Pretrained Model]
FCOS ResNet-101 FPN SipMask 37.8
FCOS ResNet-101 FPN BlendMask 38.4
FCOS ResNet-101 FPN CenterMask 38.3
FCOS ResNet-101 FPN BCNet 39.6, [Pretrained Model]

Introduction

Segmenting highly-overlapping objects is challenging, because typically no distinction is made between real object contours and occlusion boundaries. Unlike previous two-stage instance segmentation methods, BCNet models image formation as composition of two overlapping layers, where the top GCN layer detects the occluding objects (occluder) and the bottom GCN layer infers partially occluded instance (occludee). The explicit modeling of occlusion relationship with bilayer structure naturally decouples the boundaries of both the occluding and occluded instances, and considers the interaction between them during mask regression. We validate the efficacy of bilayer decoupling on both one-stage and two-stage object detectors with different backbones and network layer choices. The network of BCNet is as follows:

Step-by-step Installation

conda create -n bcnet python=3.7 -y
source activate bcnet
 
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
 
# FCOS and coco api and visualization dependencies
pip install ninja yacs cython matplotlib tqdm
pip install opencv-python==4.4.0.40
 
export INSTALL_DIR=$PWD
 
# install pycocotools. Please make sure you have installed cython.
cd $INSTALL_DIR
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install
 
# install BCNet
cd $INSTALL_DIR
git clone https://github.com/lkeab/BCNet.git
cd BCNet/
python3 setup.py build develop
 
unset INSTALL_DIR

Dataset Preparation

Prepare for coco2017 dataset following this instruction. And use our converted mask annotations to replace original annotation file for bilayer decoupling training.

  mkdir -p datasets/coco
  ln -s /path_to_coco_dataset/annotations datasets/coco/annotations
  ln -s /path_to_coco_dataset/train2017 datasets/coco/train2017
  ln -s /path_to_coco_dataset/test2017 datasets/coco/test2017
  ln -s /path_to_coco_dataset/val2017 datasets/coco/val2017

Multi-GPU Training and evaluation on Validation set

bash all.sh

Or

CUDA_VISIBLE_DEVICES=0,1 python3 tools/train_net.py --num-gpus 2 \
	--config-file configs/fcos/fcos_imprv_R_50_FPN_1x.yaml 2>&1 | tee log/train_log.txt

Pretrained Models

TBD

  mkdir pretrained_models
  #And put the downloaded pretrained models in this directory.

Testing on Test-dev

TBD

bash eval.sh

Citations

If you find BCNet useful in your research, please star this repository and consider citing:

@inproceedings{ke2021bcnet,
    author = {Ke, Lei and Tai, Yu-Wing and Tang, Chi-Keung},
    title = {Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers},
    booktitle = {CVPR},
    year = {2021},
}   

License

BCNet is released under the MIT license. See LICENSE for additional details. Thanks to the Third Party Libs detectron2

Owner
Lei Ke
PhD student in Computer Vision, HKUST
Lei Ke
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022