Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

Overview

License: CC BY 4.0 firebase-hosting test-and-format

federated is the source code for the Bachelor's Thesis

Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU)

Federated learning (also known as collaborative learning) is a machine learning technique that trains an algorithm across multiple decentralized edge devices or servers holding local data samples, without exchanging them. In this project, the decentralized data is the MIT-BIH Arrhythmia Database.

Table of Contents

Features

  • ML pipelines using centralized learning or federated learning.
  • Support for the following aggregation methods:
    • Federated Stochastic Gradient Descent (FedSGD)
    • Federated Averaging (FedAvg)
    • Differentially-Private Federated Averaging (DP-FedAvg)
    • Federated Averaging with Homomorphic Encryption
    • Robust Federated Aggregation (RFA)
  • Support for the following models:
    • A simple softmax regressor
    • A feed-forward neural network (ANN)
    • A convolutional neural network (CNN)
  • Model compression in federated learning.

Installation

Prerequisites

Initial Setup

1. Cloning federated

$ git clone https://github.com/dilawarm/federated.git
$ cd federated

2. Getting the Dataset

To download the MIT-BIH Arrhythmia Database dataset used in this project, go to https://www.kaggle.com/shayanfazeli/heartbeat and download the files

  • mitbih_train.csv
  • mitbih_test.csv

Then write:

mkdir data
mkdir data/mitbih

and move the downloaded data into the data/mitbih folder.

Installing federated locally

1. Install the Python development environment

On Ubuntu:

$ sudo apt update
$ sudo apt install python3-dev python3-pip  # Python 3.8
$ sudo apt install build-essential          # make
$ sudo pip3 install --user --upgrade virtualenv

On macOS:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
$ export PATH="/usr/local/bin:/usr/local/sbin:$PATH"
$ brew update
$ brew install python  # Python 3.8
$ brew install make    # make
$ sudo pip3 install --user --upgrade virtualenv

2. Create a virtual environment

$ virtualenv --python python3 "venv"
$ source "venv/bin/activate"
(venv) $ pip install --upgrade pip

3. Install the dependencies

(venv) $ make install

4. Test TensorFlow Federated

(venv) $ python -c "import tensorflow_federated as tff; print(tff.federated_computation(lambda: 'Hello World')())"

Installing with Docker (optional)

Build and run image from Dockerfile

$ make docker

Running experiments with federated

federated has a client program, where one can initialize the different pipelines and train models with centralized or federated learning. To run this client program:

(venv) $ make help

This will display a list of options:

usage: python -m federated.main [-h] -l  -n  [-e] [-op] [-b] [-o] -m  [-lr]

Experimentation pipeline for federated 🚀

optional arguments:
  -b , --batch_size     The batch size. (default: 32)
  -e , --epochs         Number of global epochs. (default: 15)
  -h, --help            show this help message and exit
  -l , --learning_approach 
                        Learning apporach (centralized, federated). (default: None)
  -lr , --learning_rate 
                        Learning rate for server optimizer. (default: 1.0)
  -m , --model          The model to be trained with the learning approach (ann, softmax_regression, cnn). (default: None)
  -n , --experiment_name 
                        The name of the experiment. (default: None)
  -o , --output         Path to the output folder where the experiment is going to be saved. (default: history)
  -op , --optimizer     Server optimizer (adam, sgd). (default: sgd)

Here is an example on how to train a cnn model with federated learning for 10 global epochs using the SGD server-optimizer with a learning rate of 0.01:

(venv) $ python -m federated.main --learning_approach federated --model cnn --epochs 10 --optimizer sgd --learning_rate 0.01 --experiment_name experiment_name --output path/to/experiments

Running the command illustrated above, will display a list of input fields where one can fill in more information about the training configuration, such as aggregation method, if differential privacy should be used etc. Once all training configurations have been decided, the pipeline will be initialized. All logs and training configurations will be stored in the folder path/to/experiments/logdir/experiment_name.

Analyzing experiments with federated

TensorBoard

To analyze the results with TensorBoard:

(venv) $ tensorboard --logdir=path/to/experiments/logdir/experiment_name --port=6060

Jupyter Notebook

To analyze the results in the ModelAnalysis notebook, open the notebook with your editor. For example:

(venv) $ code notebooks/ModelAnalysis.ipynb

Replace the first line in this notebook with the absolute path to your experiment folder, and run the notebook to see the results.

Documentation

The documentation can be found here.

To generate the documentation locally:

(venv) $ cd docs
(venv) $ make html
(venv) $ firefox _build/html/index.html

Tests

The unit tests included in federated are:

  • Tests for data preprocessing
  • Tests for different machine learning models
  • Tests for the training loops
  • Tests for the different privacy algorithms such as RFA.

To run all the tests:

(venv) $ make tests

To generate coverage after running the tests:

(venv) $ coverage html
(venv) $ firefox htmlcov/index.html

See the Makefile for more commands to test the modules in federated separately.

How to Contribute

  1. Clone repo and create a new branch:
$ git checkout https://github.com/dilawarm/federated.git -b name_for_new_branch
  1. Make changes and test.
  2. Submit Pull Request with comprehensive description of changes.

Owners

Pernille Kopperud Dilawar Mahmood

Enjoy! 🙂

You might also like...
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

Comments
  • Replace Makefile with .sh

    Replace Makefile with .sh

    It's not necessary to install make to run the commands. The project should use a .sh file instead so that users do not have to install make (one less dependency).

    enhancement 
    opened by dilawarm 0
Releases(v1.0)
Owner
Dilawar Mahmood
3rd year Computer science student at Norwegian University of Science and Technology
Dilawar Mahmood
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Learn about quantum computing and algorithm on quantum computing

quantum_computing this repo contains everything i learn about quantum computing and algorithm on quantum computing what is aquantum computing quantum

arfy slowy 8 Dec 25, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
graph-theoretic framework for robust pairwise data association

CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides

MIT Aerospace Controls Laboratory 118 Dec 28, 2022