Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

Related tags

Deep Learning1xN
Overview

1xN Pattern for Pruning Convolutional Neural Networks (paper) .

This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Networks". A more formal project will be released as soon as we are given the authority from Alibaba Group.

1) 1×N Block Pruning

Requirements

  • Python 3.7
  • Pytorch >= 1.0.1
  • CUDA = 10.0.0

Code Running

To reproduce our experiments, please use the following command:

python imagenet.py \
--gpus 0 \
--arch mobilenet_v1 (or mobilenet_v2 or mobilenet_v3_large or mobilenet_v3_small) \
--job_dir ./experiment/ \
--data_path [DATA_PATH] \
--pretrained_model [PRETRAIN_MODEL_PATH] \
--pr_target 0.5 \
--N 4 (or 2, 8, 16, 32) \
--conv_type BlockL1Conv \
--train_batch_size 256 \
--eval_batch_size 256 \
--rearrange \

Accuracy Performance

Table 1: Performance comparison of our 1×N block sparsity against weight pruning and filter pruning (p = 50%).

MobileNet-V1 Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 70.764 89.592 Pruned Model
Filter Pruning 65.348 86.264 Pruned Model
1 x 2 Block 70.281 89.370 Pruned Model
1 x 4 Block 70.052 89.056 Pruned Model
1 x 8 Block 69.908 89.027 Pruned Model
1 x 16 Block 69.559 88.933 Pruned Model
1 x 32 Block 69.541 88.801 Pruned Model
MobileNet-V2 Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 71.146 89.872 Pruned Model
Filter Pruning 66.730 87.190 Pruned Model
1 x 2 Block 70.233 89.417 Pruned Model
1 x 4 Block 60.706 89.165 Pruned Model
1 x 8 Block 69.372 88.862 Pruned Model
1 x 16 Block 69.352 88.708 Pruned Model
1 x 32 Block 68.762 88.425 Pruned Model
MobileNet-V3-small Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 66.376 86.868 Pruned Model
Filter Pruning 59.054 81.713 Pruned Model
1 x 2 Block 65.380 86.060 Pruned Model
1 x 4 Block 64.465 85.495 Pruned Model
1 x 8 Block 64.101 85.274 Pruned Model
1 x 16 Block 63.126 84.203 Pruned Model
1 x 32 Block 62.881 83.982 Pruned Model
MobileNet-V3-large Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 72.897 91.093 Pruned Model
Filter Pruning 69.137 89.097 Pruned Model
1 x 2 Block 72.120 90.677 Pruned Model
1 x 4 Block 71.935 90.458 Pruned Model
1 x 8 Block 71.478 90.163 Pruned Model
1 x 16 Block 71.112 90.129 Pruned Model
1 x 32 Block 70.769 89.696 Pruned Model

More links for pruned models under different pruning rates and their training logs can be found in MobileNet-V2 and ResNet-50.

Evaluate our models

To verify the performance of our pruned models, download our pruned models from the links provided above and run the following command:

python imagenet.py \
--gpus 0 \
--arch mobilenet_v1 (or mobilenet_v2 or mobilenet_v3_large or mobilenet_v3_small) \
--data_path [DATA_PATH] \
--conv_type DenseConv \
--evaluate [PRUNED_MODEL_PATH] \
--eval_batch_size 256 \

Arguments

optional arguments:
  -h, --help            show this help message and exit
  --gpus                Select gpu_id to use. default:[0]
  --data_path           The dictionary where the data is stored.
  --job_dir             The directory where the summaries will be stored.
  --resume              Load the model from the specified checkpoint.
  --pretrain_model      Path of the pre-trained model.
  --pruned_model        Path of the pruned model to evaluate.
  --arch                Architecture of model. For ImageNet :mobilenet_v1, mobilenet_v2, mobilenet_v3_small, mobilenet_v3_large
  --num_epochs          The num of epochs to train. default:180
  --train_batch_size    Batch size for training. default:256
  --eval_batch_size     Batch size for validation. default:100
  --momentum            Momentum for Momentum Optimizer. default:0.9
  --lr LR               Learning rate. default:1e-2
  --lr_decay_step       The iterval of learn rate decay for cifar. default:100 150
  --lr_decay_freq       The frequecy of learn rate decay for Imagenet. default:30
  --weight_decay        The weight decay of loss. default:4e-5
  --lr_type             lr scheduler. default: cos. optional:exp/cos/step/fixed
  --use_dali            If this parameter exists, use dali module to load ImageNet data (benefit in training acceleration).
  --conv_type           Importance criterion of filters. Default: BlockL1Conv. optional: BlockRandomConv, DenseConv
  --pr_target           Pruning rate. default:0.5
  --full                If this parameter exists, prune fully-connected layer.
  --N                   Consecutive N kernels for removal (see paper for details).
  --rearrange           If this parameter exists, filters will be rearranged (see paper for details).
  --export_onnx         If this parameter exists, export onnx model.

2)Filter Rearrangement

Table 2: Performance studies of our 1×N block sparsity with and without filter rearrangement (p=50%).

N = 2 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 69.900 89.296 Pruned Model
Rearrange 70.233 89.417 Pruned Model
N = 4 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 69.521 88.920 Pruned Model
Rearrange 69.579 88.944 Pruned Model
N = 8 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 69.206 88.608 Pruned Model
Rearrange 69.372 88.862 Pruned Model
N = 16 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 68.971 88.399 Pruned Model
Rearrange 69.352 88.708 Pruned Model
N = 32 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 68.431 88.315 Pruned Model
Rearrange 68.762 88.425 Pruned Model

3)Encoding and Decoding Efficiency

Performance and latency comparison

Our sparse convolution implementation has been released to TVM community.

To verify the performance of our pruned models, convert onnx model and run the following command:

python model_tune.py \
--onnx_path [ONNX_MODEL_PATH] \
--bsr 4 \
--bsc 1 \
--sparsity 0.5

The detail tuning setting is referred to TVM.

4)Contact

Any problem regarding this code re-implementation, please contact the first author: [email protected] or the third author: [email protected].

Any problem regarding the sparse convolution implementation, please contact the second author: [email protected].

Owner
Mingbao Lin (林明宝)
I am currently a final-year Ph.D student.
Mingbao Lin (林明宝)
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu

9 Nov 27, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Crowd-sourced Annotation of Human Motion.

Motion Annotation Tool Live: https://motion-annotation.humanoids.kit.edu Paper: The KIT Motion-Language Dataset Installation Start by installing all P

Matthias Plappert 4 May 25, 2020
Machine Learning Platform for Kubernetes

Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica

polyaxon 3.2k Dec 23, 2022
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022