CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

Related tags

Deep LearningCHERRY
Overview

CHERRY CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link prediction decoder.

Overview

There are two kind of tasks that CHERRY can work:

  1. Host prediction for virus
  2. Identifying viruses that infect pathogenic bacteria

Users can choose one of the task when running CHERRY. If you have any trouble installing or using CHERRY, please let us know by opening an issue on GitHub or emailing us ([email protected]).

Required Dependencies

  • Python 3.x
  • Numpy
  • Pytorch>1.8.0
  • Networkx
  • Pandas
  • Diamond
  • BLAST
  • MCL
  • Prodigal

All these packages can be installed using Anaconda.

If you want to use the gpu to accelerate the program:

  • cuda
  • Pytorch-gpu

An easiler way to install

We recommend you to install all the package with Anaconda

After cloning this respository, you can use anaconda to install the CHERRY.yaml. This will install all packages you need with gpu mode (make sure you have installed cuda on your system to use the gpu version. Othervise, it will run with cpu version). The command is: conda env create -f CHERRY.yaml

  • For cpu version pytorch: conda install pytorch torchvision torchaudio cpuonly -c pytorch
  • For gpu version pytorch: Search pytorch to find the correct cuda version according to your computer Note: we suggest you to install all the package using conda (both miniconda and anaconda are ok). We supply a

Prepare the database

Due to the limited size of the GitHub, we zip the database. Before using CHEERY, you need to unpack them using the following commands.

cd CHEERY/dataset
bzip2 -d protein.fasta.bz2
bzip2 -d nucl.fasta.bz2
cd ../prokaryote
gunzip *
cd ..

Usage

1 Predicting host for viruses

If you want to predict hosts for viruses, the input should be a fasta file containing the virual sequences. We support an example file named "test_contigs.fa" in the Github folder. Then, the only command that you need to run is

python run_Speed_up.py [--contigs INPUT_FA] [--len MINIMUM_LEN] [--model MODEL] [--topk TOPK_PRED]

Options

  --contigs INPUT_FA
                        input fasta file
  --len MINIMUM_LEN
                        predict only for sequence >= len bp (default 8000)
  --model MODEL (pretrain or retrain)
                        predicting host with pretrained parameters or retrained paramters (default pretrain)
  --topk TOPK_PRED
                        The host prediction with topk score (default 1)

Example

Prediction on species level with pretrained paramters:

python run_Speed_up.py --contigs test_contigs.fa --len 8000 --model pretrain --topk 3

Note: Commonly, you do not need to retrain the model, especially when you do not have gpu unit.

OUTPUT

The format of the output file is a csv file ("final_prediction.csv") which contain the prediction of each virus. Column contig_name is the accession from the input.

Since the topk method is given, we cannot give the how taxaonmic tree for each prediction. However, we will supply a script for you to convert the prediction into a complte taxonmoy tree. Use the following command to generate taxonomy tree:

python run_Taxonomy_tree.py [--k TOPK_PRED]

Because there are k prediction in the "final_prediction.csv" file, you need to specify the k to generate the tree. The output of program is 'Top_k_prediction_taxonomy.csv'.

2 Predicting virus infecting prokaryote

If you want to predict hosts for viruses, you need to supply two kinds of inputs:

  1. Place your prokaryotic genomes in new_prokaryote/ folder.
  2. A fasta file containing the virus squences. Then, the program will output which virus in your fasta file will infect the prkaryotes in the new_prokaryote/ folder.

The command is simlar to the previous one but two more paramter is need:

python run_Speed_up.py [--mode MODE] [--t THRESHOLD]

Example

python run_Speed_up.py --contigs test_contigs.fa --mode prokaryote --t 0.98

Options

  --mode MODE (prokaryote or virus)
                        Switch mode for predicting virus or predicting host
  --t THRESHOLD
                        The confident threshold for predicting virus, the higier the threshold the higher the precision. (default 0.98)

OUTPUT

The format of the output file is a csv file which contain the prediction of each virus. Column prokaryote is the accession of your given prokaryotic genomes. Column virus is the list of viruses that might infect these genomes.

Extension of the parokaryotic genomes database

Due to the limitation of storage on GitHub, we only provided the parokaryote with known interactions (Date up to 2020) in prokaryote folder. If you want to predict interactions with more species, please place your parokaryotic genomes into prokaryote/ folder and add an entry of taxonomy information into dataset/prokaryote.csv. We also recommand you only add the prokaryotes of interest to save the computation resourse and time. This is because all the genomes in prokaryote folder will be used to generate the multimodal graph, which is a O(n^2) algorithm.

Example

If you have a metagenomic data and you know that only E. coli, Butyrivibrio fibrisolvens, and Faecalibacterium prausnitzii exist in the metagenomic data. Then you can placed the genomes of these three species into the prokaryote/ and add the entry in dataset/prokaryote.csv. An example of the entry is look like:

GCF_000007445,Bacteria,Proteobacteria,Gammaproteobacteria,Enterobacterales,Enterobacteriaceae,Escherichia,Escherichia coli

The corresponding header of the entry is: Accession,Superkingdom,Phylum,Class,Order,Family,Genus,Species. If you do not know the whole taxonomy tree, you can directly use a specific name for all columns. Because CHERRY is a link prediction tool, it will directly use the given name for prediction.

Noted: Since our program will use the accession for searching and constructing the knowledge graph, the name of the fasta file of your genomes should be the same as the given accession. For example, if your accession is GCF_000007445, your file name should be GCF_000007445.fa. Otherwise, the program cannot find the entry.

Extension of the virus-prokaryote interactions database

If you know more virus-prokaryote interactions than our pre-trained model (given in Interactiondata), you can add them to train a custom model. Several steps you need to do to train your model:

  1. Add your viral genomes into the nucl.fasta file and run the python refresh.py to generate new protein.fasta and database_gene_to_genome.csv files. They will replace the old one in the dataset/ folder automatically.
  2. Add the entrys of host taxonomy information into dataset/virus.csv. The corresponding header of the entry is: Accession (of the virus), Superkingdom, Phylum, Class, Order, Family, Genus, Species. The required field is Species. You can left it blank if you do not know other fields. Also, the accession of the virus shall be the same as your fasta entry.
  3. Place your prokaryotic genomes into the the prokaryote/ folder and add an entry in dataset/prokaryote.csv. The guideline is the same as the previous section.
  4. Use retrain as the parameter for --mode option to run the program.

References

The paper is submitted to the Briefings in Bioinformatics.

The arXiv version can be found via: CHERRY: a Computational metHod for accuratE pRediction of virus-pRokarYotic interactions using a graph encoder-decoder model

Contact

If you have any questions, please email us: [email protected]

Notes

  1. if the program output an error (which is caused by your machine): Error: mkl-service + Intel(R) MKL: MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 library. You can type in the command export MKL_SERVICE_FORCE_INTEL=1 before runing run_Speed_up.py
Owner
Kenneth Shang
Kenneth Shang
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Export CenterPoint PonintPillars ONNX Model For TensorRT

CenterPoint-PonintPillars Pytroch model convert to ONNX and TensorRT Welcome to CenterPoint! This project is fork from tianweiy/CenterPoint. I impleme

CarkusL 149 Dec 13, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022