EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

Overview

EGNN - Pytorch

Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This technique went for simple invariant features, and ended up beating all previous methods (including SE3 Transformer and Lie Conv) in both accuracy and performance. SOTA in dynamical system models, molecular activity prediction tasks, etc.

Install

$ pip install egnn-pytorch

Usage

import torch
from egnn_pytorch import EGNN

layer1 = EGNN(dim = 512)
layer2 = EGNN(dim = 512)

feats = torch.randn(1, 16, 512)
coors = torch.randn(1, 16, 3)

feats, coors = layer1(feats, coors)
feats, coors = layer2(feats, coors) # (1, 16, 512), (1, 16, 3)

With edges

import torch
from egnn_pytorch import EGNN

layer1 = EGNN(dim = 512, edge_dim = 4)
layer2 = EGNN(dim = 512, edge_dim = 4)

feats = torch.randn(1, 16, 512)
coors = torch.randn(1, 16, 3)
edges = torch.randn(1, 16, 16, 4)

feats, coors = layer1(feats, coors, edges)
feats, coors = layer2(feats, coors, edges) # (1, 16, 512), (1, 16, 3)

Citations

@misc{satorras2021en,
    title 	= {E(n) Equivariant Graph Neural Networks}, 
    author 	= {Victor Garcia Satorras and Emiel Hoogeboom and Max Welling},
    year 	= {2021},
    eprint 	= {2102.09844},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • training batch size

    training batch size

    Dear authors,

    thanks for your great work! I saw your example, which is easy to understand. But I notice that during training, in each iteration, it seems it supports the case where batch-size > 1, but all the graphs have the same adj_mat. do you have better solution for that? thanks

    opened by futianfan 6
  • Import Error when torch_geometric is not available

    Import Error when torch_geometric is not available

    https://github.com/lucidrains/egnn-pytorch/blob/e35510e1be94ee9f540bf2ffea49cd63578fe473/egnn_pytorch/egnn_pytorch.py#L413

    A small problem, this Tensor is not defined.

    Thanks for your work.

    opened by zrt 4
  • About aggregations in EGNN_sparse

    About aggregations in EGNN_sparse

    Hi, thanks for your great work!

    I have a question on how aggregations are computed for node embedding and coordinate embedding. In the paper, the aggregation for node embedding is computed over its neighbors, while the aggregation for coordinate embedding is computed over is computed over all others. However, in EGNN_sparse, I didn't notice such difference in aggregations.

    I guess it is because computing all-pair messages for coordinate embedding makes 'sparse' meaningless, but I would like to double-check to see if I get this correctly. So anyway, did you do this intentionally? Or did I miss something?

    My appreciation.

    opened by simon1727 4
  • Few queries on the implementation

    Few queries on the implementation

    Hi - fast work coding these things up, as usual! Looking at the paper and your code, you're not using squared distance for the edge weighting. Is that intentional? Also, it looks like you are adding the old feature vectors to the new ones rather than taking the new vectors directly from the fully connected net - is that also an intentional change from the paper?

    opened by denjots 3
  • Fix PyG problems. add exmaple for point cloud denoising

    Fix PyG problems. add exmaple for point cloud denoising

    • Fixed some tiny errors in data flows for the PyG layers (dimensions and slices mainly)
    • fixed the EGNN_Sparse_Network so now it works
    • provides example for point cloud denoising (from gaussian masked coordinates), and showcases potential issues:
      • unstable (could be due to nature of data, not sure, but gvp does well on it)
      • not able to beat baseline (in contrast, gvp gets to 0.8 RMSD while this gets to the baseline 1 RMSD but not below it)
    opened by hypnopump 2
  • EGNN_sparse incorrect positional encoding output

    EGNN_sparse incorrect positional encoding output

    Hi, many thanks for the implementation!

    I was quickly checking the code for the pytorch geometric implementation of the EGNN_sparse layer, and I noticed that it expects the first 3 columns in the features to be the coordinates. However, in the update method, features and coordinates are passed in the wrong order.

    https://github.com/lucidrains/egnn-pytorch/blob/375d686c749a685886874baba8c9e0752db5f5be/egnn_pytorch/egnn_pytorch.py#L192

    This may cause problems during learning (think of concatenating several of these layers), as they expect coordinate and feature order to be consistent.

    One can reproduce this behaviour in the following snippet:

    layer = EGNN_sparse(feats_dim=1, pos_dim=3, m_dim=16, fourier_features=0)
    
    R = rot(*torch.rand(3))
    T = torch.randn(1, 1, 3)
    
    feats = torch.randn(16, 1)
    coors = torch.randn(16, 3)
    x1 = torch.cat([coors, feats], dim=-1)
    x2 = torch.cat([(coors @ R + T).squeeze() , feats], dim=-1)
    edge_idxs = (torch.rand(2, 20) * 16).long()
    
    out1 = layer(x=x1, edge_index=edge_idxs)
    out2 = layer(x=x2, edge_index=edge_idxs)
    

    After fixing the order of these arguments in the update method then the layer behaves as expected (output features are equivariant, and coordinate features are equivariant upon se(3) transformation)

    opened by josejimenezluna 2
  • Nan Values after stacking multiple layers

    Nan Values after stacking multiple layers

    Hi Lucid!!

    I find that when stacking multiple layers the output from the model rapidly goes to Nan. I suspect it may be related to the weights used for initialization.

    Here is a minimal working example:

    Make some data:

        import numpy as np
        import torch
        from egnn_pytorch import EGNN
        
        torch.set_default_dtype(torch.double)
    
        zline = np.arange(0, 2, 0.05)
        xline = np.sin(zline * 2 * np.pi) 
        yline = np.cos(zline * 2 * np.pi)
        points = np.array([xline, yline, zline])
        geom = torch.tensor(points.transpose())[None,:]
        feat = torch.randint(0, 20, (1, geom.shape[1],1))
    

    Make a model:

        class ResEGNN(torch.nn.Module):
            def __init__(self, depth = 2, dims_in = 1):
                super().__init__()
                self.layers = torch.nn.ModuleList([EGNN(dim = dims_in) for i in range(depth)])
            
            def forward(self, geom, feat):
                for layer in self.layers:
                    feat, geom = layer(feat, geom)
                return geom
    

    Run model for varying depths:

        for i in range(10):
            model = ResEGNN(depth = i)
            pred = model(geom, feat)
            mean_absolute_value  = torch.abs(pred).mean()
            print("Order of predictions {:.2f}".format(np.log(mean_absolute_value.detach().numpy())))
    

    Output : Order of predictions -0.29 Order of predictions 0.05 Order of predictions 6.65 Order of predictions 21.38 Order of predictions 78.25 Order of predictions 302.71 Order of predictions 277.38 Order of predictions nan Order of predictions nan Order of predictions nan

    opened by brennanaba 2
  • Edge features thrown out

    Edge features thrown out

    Hi, thanks for this implementation!

    I was wondering if the pytorch-geometric implementation of this architecture is throwing the edge features out by mistake, as seen here

    https://github.com/lucidrains/egnn-pytorch/blob/1b8320ade1a89748e4042ae448626652f1c659a1/egnn_pytorch/egnn_pytorch.py#L148-L151

    Or maybe my understanding is wrong? Cheers,

    opened by josejimenezluna 2
  • solve ij -> i bottleneck in sparse version

    solve ij -> i bottleneck in sparse version

    I don't recommend normalizing the weights nor the coords.

    • The weights are the coefficient that multiplies the delta in the i->j direction
    • the coords are the deltas in the i->j direction Can't see the advantage of normalizing them beyond a naive stabilization that might affect the convergence properties by needing more layers due to the limited transformation that a layer will be able to do.

    It works fine for denoising without normalization (the unstability might come from huge outliers, but then tuning the learning rate or clipping the gradients might be of help.)

    opened by hypnopump 0
  • Questions about the EGNN code

    Questions about the EGNN code

    Recently, I've tried to read EGNN paper and study your EGNN code. Actually, I had hard time to understand both paper and code because my major is not computer science. When studying your code, I realize that the shape of hidden_out and the shape of kwargs["x"] must be same to perform add operation (becaus of residual connection) in the class EGNN_sparse forward method. How can I increase or decrease the hidden dimension size of x?

    I would like to get some advice.

    Thanks for your consideration in this regard.

    opened by Byun-jinyoung 0
  • Wrong edge_index size hint in  class EGNN_Sparse of pyg version

    Wrong edge_index size hint in class EGNN_Sparse of pyg version

    Hi, I found there may be a little mistake. In the input hint of class EGNN_Sparse of pyg version, the size of edge_index is (n_edges, 2). However, it should be (2, n_edges). Otherwise, the distance calculation will be not correct. """ Inputs: * x: (n_points, d) where d is pos_dims + feat_dims * edge_index: (n_edges, 2) * edge_attr: tensor (n_edges, n_feats) excluding basic distance feats. * batch: (n_points,) long tensor. specifies xloud belonging for each point * angle_data: list of tensors (levels, n_edges_i, n_length_path) long tensor. * size: None """

    opened by Layne-Huang 2
  • Exploding Gradients With 4 Layers

    Exploding Gradients With 4 Layers

    I'm using EGNN with 4 layers (where I also do global attention after each layer), and I'm seeing exploding gradients after 90 epochs or so. I'm using techniques discussed earlier (sparse attention matrix, coor_weights_clamp_value, norm_coors), but I'm not sure if there's anything else I should be doing. I'm also not updating the coordinates, so the fix in the pull request doesn't apply.

    opened by cutecows 0
  • Added optional tanh to coors_mlp

    Added optional tanh to coors_mlp

    This removes the NaN bug completely (must also use norm_coors otherwise performance dies)

    The NaN bug comes from the coors_mlp exploding, so forcing values between -1 and 1 prevents this. If coordinates are normalised then performance should not be adversely affected.

    opened by jscant 1
Releases(0.2.6)
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows

FlowTorch is a PyTorch library for learning and sampling from complex probability distributions using a class of methods called Normalizing Flows.

Meta Incubator 272 Jan 02, 2023
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
Compare neural networks by their feature similarity

PyTorch Model Compare A tiny package to compare two neural networks in PyTorch. There are many ways to compare two neural networks, but one robust and

Anand Krishnamoorthy 181 Jan 04, 2023
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020