Official implementation of "Generating 3D Molecules for Target Protein Binding"

Related tags

Deep LearningGraphBP
Overview

Generating 3D Molecules for Target Protein Binding

This is the official implementation of the GraphBP method proposed in the following paper.

Meng Liu, Youzhi Luo, Kanji Uchino, Koji Maruhashi, and Shuiwang Ji. "Generating 3D Molecules for Target Protein Binding".

Requirements

We include key dependencies below. The versions we used are in the parentheses. Our detailed environmental setup is available in environment.yml.

  • PyTorch (1.9.0)
  • PyTorch Geometric (1.7.2)
  • rdkit-pypi (2021.9.3)
  • biopython (1.79)
  • openbabel (3.3.1)

Preparing Data

  • Download and extract the CrossDocked2020 dataset:
wget https://bits.csb.pitt.edu/files/crossdock2020/CrossDocked2020_v1.1.tgz -P data/crossdock2020/
tar -C data/crossdock2020/ -xzf data/crossdock2020/CrossDocked2020_v1.1.tgz
wget https://bits.csb.pitt.edu/files/it2_tt_0_lowrmsd_mols_train0_fixed.types -P data/crossdock2020/
wget https://bits.csb.pitt.edu/files/it2_tt_0_lowrmsd_mols_test0_fixed.types -P data/crossdock2020/

Note: (1) The unzipping process could take a lot of time. Unzipping on SSD is much faster!!! (2) Several samples in the training set cannot be processed by our code. Hence, we recommend replacing the it2_tt_0_lowrmsd_mols_train0_fixed.types file with a new one, where these samples are deleted. The new one is available here.

  • Split data files:
python scripts/split_sdf.py data/crossdock2020/it2_tt_0_lowrmsd_mols_train0_fixed.types data/crossdock2020
python scripts/split_sdf.py data/crossdock2020/it2_tt_0_lowrmsd_mols_test0_fixed.types data/crossdock2020

Run

  • Train GraphBP from scratch:
CUDA_VISIBLE_DEVICES=${you_gpu_id} python main.py

Note: GraphBP can be trained on a 48GB GPU with batchsize=16. Our trained model is avaliable here.

  • Generate atoms in the 3D space with the trained model:
CUDA_VISIBLE_DEVICES=${you_gpu_id} python main_gen.py
  • Postprocess and then save the generated molecules:
CUDA_VISIBLE_DEVICES=${you_gpu_id} python main_eval.py

Reference

@article{liu2022graphbp,
      title={Generating 3D Molecules for Target Protein Binding},
      author={Meng Liu and Youzhi Luo and Kanji Uchino and Koji Maruhashi and Shuiwang Ji},
      journal={arXiv preprint arXiv:2204.09410},
      year={2022},
}
Owner
DIVE Lab, Texas A&M University
DIVE Lab, Texas A&M University
The project was to detect traffic signs, based on the Megengine framework.

trafficsign 赛题 旷视AI智慧交通开源赛道,初赛1/177,复赛1/12。 本赛题为复杂场景的交通标志检测,对五种交通标志进行识别。 框架 megengine 算法方案 网络框架 atss + resnext101_32x8d 训练阶段 图片尺寸 最终提交版本输入图片尺寸为(1500,2

20 Dec 02, 2022
An official implementation of the paper Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

Sequence Feature Alignment (SFA) By Wen Wang, Yang Cao, Jing Zhang, Fengxiang He, Zheng-jun Zha, Yonggang Wen, and Dacheng Tao This repository is an o

WangWen 79 Dec 24, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022