Implementation of ProteinBERT in Pytorch

Overview

ProteinBERT - Pytorch (wip)

Implementation of ProteinBERT in Pytorch.

Original Repository

Install

$ pip install protein-bert-pytorch

Usage

import torch
from protein_bert_pytorch import ProteinBERT

model = ProteinBERT(
    num_tokens = 21,
    num_annotation = 8943,
    dim = 512,
    dim_global = 256,
    depth = 6,
    narrow_conv_kernel = 9,
    wide_conv_kernel = 9,
    wide_conv_dilation = 5,
    attn_heads = 8,
    attn_dim_head = 64
)

seq = torch.randint(0, 21, (2, 2048))
mask = torch.ones(2, 2048).bool()
annotation = torch.randint(0, 1, (2, 8943)).float()

seq_logits, annotation_logits = model(seq, annotation, mask = mask) # (2, 2048, 21), (2, 8943)

Citations

@article {Brandes2021.05.24.445464,
    author      = {Brandes, Nadav and Ofer, Dan and Peleg, Yam and Rappoport, Nadav and Linial, Michal},
    title       = {ProteinBERT: A universal deep-learning model of protein sequence and function},
    year        = {2021},
    doi         = {10.1101/2021.05.24.445464},
    publisher   = {Cold Spring Harbor Laboratory},
    URL         = {https://www.biorxiv.org/content/early/2021/05/25/2021.05.24.445464},
    eprint      = {https://www.biorxiv.org/content/early/2021/05/25/2021.05.24.445464.full.pdf},
    journal     = {bioRxiv}
}
You might also like...
A PyTorch implementation of paper
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.09

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

A pytorch implementation of the ACL2019 paper
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

A Pytorch implementation of
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

PyTorch original implementation of Cross-lingual Language Model Pretraining.
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Comments
  • bugFix: x and y not on the same device when Learner is trained on GPU

    bugFix: x and y not on the same device when Learner is trained on GPU

    When

    seq        = torch.randint(0, 21, (2, 2048)).cuda()
    annotation = torch.randint(0, 1, (2, 8943)).float().cuda()
    mask       = torch.ones(2, 2048).bool().cuda()
    
    learner.cuda()
    
    loss = learner(seq, annotation, mask = mask) # (2, 2048, 21), (2, 8943)
    
    

    OUTPUT

    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    <ipython-input-2-60892e498570> in <module>
          4 learner.cuda()
          5 
    ----> 6 loss = learner(seq, annotation, mask = mask) # (2, 2048, 21), (2, 8943)
    
    ~/data/.conda/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
        887             result = self._slow_forward(*input, **kwargs)
        888         else:
    --> 889             result = self.forward(*input, **kwargs)
        890         for hook in itertools.chain(
        891                 _global_forward_hooks.values(),
    
    /mnt/5280b/wwang/proteinbert/protein_bert_pytorch.py in forward(self, seq, annotation, mask)
        365 
        366         for token_id in self.exclude_token_ids:
    --> 367             random_replace_token_prob_mask = random_replace_token_prob_mask & (random_tokens != token_id)  # make sure you never substitute a token with an excluded token type (pad, start, end)
        368 
        369         # noise sequence
    
    RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
    
    opened by wilmerwang 0
  • How to use this bert version to use the pretrianed model?

    How to use this bert version to use the pretrianed model?

    Hi guys, thanks for great work. I'm trying to use this pytorch version protein-bert to use the pre-trained model 'ftp://ftp.cs.huji.ac.il/users/nadavb/protein_bert/epoch_92400_sample_23500000.pkl', but have no clues at all. Could you please give some suggestions? Thank you so much!

    opened by Y-H-Joe 1
Owner
Phil Wang
Working with Attention
Phil Wang
This repository contains examples of Task-Informed Meta-Learning

Task-Informed Meta-Learning This repository contains examples of Task-Informed Meta-Learning (paper). We consider two tasks: Crop Type Classification

10 Dec 19, 2022
Задания КЕГЭ по информатике 2021 на Python

КЕГЭ 2021 на Python В этом репозитории мои решения типовых заданий КЕГЭ по информатике в 2021 году, БЕСПЛАТНО! Задания Взяты с https://inf-ege.sdamgia

8 Oct 13, 2022
A Streamlit web app that generates Rick and Morty stories using GPT2.

Rick and Morty Story Generator This project uses a pre-trained GPT2 model, which was fine-tuned on Rick and Morty transcripts, to generate new stories

₸ornike 33 Oct 13, 2022
Course project of [email protected]

NaiveMT Prepare Clone this repository git clone [email protected]:Poeroz/NaiveMT.git

Poeroz 2 Apr 24, 2022
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
Incorporating KenLM language model with HuggingFace implementation of Wav2Vec2CTC Model using beam search decoding

Wav2Vec2CTC With KenLM Using KenLM ARPA language model with beam search to decode audio files and show the most probable transcription. Assuming you'v

farisalasmary 65 Sep 21, 2022
Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers

beyond masking Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers The code is coming Figure 1: Pipeline of token-based pre-

Yunjie Tian 23 Sep 27, 2022
Modeling cumulative cases of Covid-19 in the US during the Covid 19 Delta wave using Bayesian methods.

Introduction The goal of this analysis is to find a model that fits the observed cumulative cases of COVID-19 in the US, starting in Mid-July 2021 and

Alexander Keeney 1 Jan 05, 2022
Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image

K. Seeliger 2 May 17, 2022
SurvTRACE: Transformers for Survival Analysis with Competing Events

⭐ SurvTRACE: Transformers for Survival Analysis with Competing Events This repo provides the implementation of SurvTRACE for survival analysis. It is

Zifeng 13 Oct 06, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

420 Dec 28, 2022
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新

bert4pytorch 2021年8月27更新: 感谢大家的star,最近有小伙伴反映了一些小的bug,我也注意到了,奈何这个月工作上实在太忙,更新不及时,大约会在9月中旬集中更新一个只需要pip一下就完全可用的版本,然后会新添加一些关键注释。 再增加对抗训练的内容,更新一个完整的finetune

muqiu 317 Dec 18, 2022
A full spaCy pipeline and models for scientific/biomedical documents.

This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds

AI2 1.3k Jan 03, 2023
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
BiQE: Code and dataset for the BiQE paper

BiQE: Bidirectional Query Embedding This repository includes code for BiQE and the datasets introduced in Answering Complex Queries in Knowledge Graph

Bhushan Kotnis 1 Oct 20, 2021
sangha, pronounced "suhng-guh", is a social networking, booking platform where students and teachers can share their practice.

Flask React Project This is the backend for the Flask React project. Getting started Clone this repository (only this branch) git clone https://github

Courtney Newcomer 17 Sep 29, 2021