A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Overview

Imagenette

🎶 Imagenette, gentille imagenette,

Imagenette, je te plumerai. 🎶

(Imagenette theme song thanks to Samuel Finlayson)


NB:

  • Versions of Imagenette and Imagewoof with noisy labels are now available as CSV files that come with the dataset.
  • The Imagenette and Imagewoof datasets have recently (Dec 6 2019) changed. They now have a 70/30 train/valid split.
  • The old versions (which have a much smaller validation set) are still available with the same URLs, but the URLs below point to the new versions.
  • We've also added the new Image网 dataset (see below for details). The leaderboards below been updated using the new datasets, using a strong. Can you beat it?...

The Datasets

Imagenette

Imagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute).

'Imagenette' is pronounced just like 'Imagenet', except with a corny inauthentic French accent. If you've seen Peter Sellars in The Pink Panther, then think something like that. It's important to ham up the accent as much as possible, otherwise people might not be sure whether you're refering to "Imagenette" or "Imagenet". (Note to native French speakers: to avoid confusion, be sure to use a corny inauthentic American accent when saying "Imagenet". Think something like the philosophy restaurant skit from Monty Python's The Meaning of Life.)

The '320 px' and '160 px' versions have their shortest side resized to that size, with their aspect ratio maintained.

The dataset also comes with a CSV file with 1%, 5%, 25%, and 50% of the labels randomly changed to an incorrect label. More information about the noisy labels are provided in the "noisy_labels" folder. Leaderboards for 5% noise and 50% noise are maintained below.

Too easy for you? In that case, you might want to try Imagewoof.

Imagewoof

Imagewoof is a subset of 10 classes from Imagenet that aren't so easy to classify, since they're all dog breeds. The breeds are: Australian terrier, Border terrier, Samoyed, Beagle, Shih-Tzu, English foxhound, Rhodesian ridgeback, Dingo, Golden retriever, Old English sheepdog. (No we will not enter in to any discussion in to whether a dingo is in fact a dog. Any suggestions to the contrary are un-Australian. Thank you for your cooperation.)

The dataset also comes with a CSV file with 1%, 5%, 25%, and 50% of the labels randomly changed to an incorrect label. More information about the noisy labels are provided in the "noisy_labels" folder.

Imagewoof too easy for you too?!? Then get your hands on Image网.

Image网

Image网 is pronounced "Imagewang"; 网 means "net" in Chinese! Image网 contains Imagenette and Imagewoof combined, but with some twists that make it into a tricky semi-supervised unbalanced classification problem:

  • The validation set is the same as Imagewoof (i.e. 30% of Imagewoof images); there are no Imagenette images in the validation set (they're all in the training set)

  • Only 10% of Imagewoof images are in the training set!

  • The remaining are in the unsup ("unsupervised") directory, and you can not use their labels in training!

  • It's even hard to type and hard to say!

  • Full size download;

  • 320 px download;

  • 160 px download.

Why Imagenette?

I (Jeremy Howard, that is) mainly made Imagenette because I wanted a small vision dataset I could use to quickly see if my algorithm ideas might have a chance of working. They normally don't, but testing them on Imagenet takes a really long time for me to find that out, especially because I'm interested in algorithms that perform particularly well at the end of training.

But I think this can be a useful dataset for others as well.

Usage

If you are already using the fastai library, you can download and access these quickly with commands like:

path = untar_data(URLs.IMAGENETTE_160)

where path now stores the destination to ImageNette-160.

For researchers

  • Try to create a classifier that's as accurate as possible under various constraints (we'll keep leaderboards below, submit your PR with a link to your repo or gist!), such as:
    • Within a certain number of epochs: 5, 20, 40, 160
    • Within a certain budget on AWS or GCP (use spot or interruptible instances to save money): $0.05, $0.10, $0.25, $0.50, $1.00, $2.00
  • Experiment with other low resource problems like transfer learning from small datasets, using semi-supervised learning to help classify small datasets, etc
  • Test the impact of using different sized images, either separately, or together as part of training (i.e. progressive resizing)
  • Compare your algorithm on easy vs hard small datasets, which are otherwise very similar (Imagenette vs Imagewoof)
  • Ensure that you start from random weights - not from pretrained weights.

For students

  • Practice your modeling skills on a dataset that's very similar to Imagenet, but much less expensive to deal with
  • Do send me a PR with your other applications for this dataset!

Tips

  • Because there are only 10 categories, the usual "top 5 accuracy" isn't so interesting. So you should generally report top 1 accuracy when using Imagenette
  • The best approaches to 5 epoch training often don't scale well to more epochs
  • Data augmentation like mixup tends to only help for 80+ epochs

Leaderboard

Generally you'll see +/- 1% differences from run to run since it's quite a small validation set. So please only send in contributions that are higher than the reported accuracy >80% of the time. Here's the rules:

  • No inference time tricks, e.g. no: TTA, validation size > train size
  • Must start with random weights
  • Must be one of the size/#epoch combinations listed in the table
  • If you have the resources to do so, try to get an average of 5 runs, to get a stable comparison. Use the "# Runs" column to include this (note that train_imagenette.py provides a --runs flag to make this easy)
  • In the URL column include a link to a notebook, blog post, gist, or similar which explains what you did to get your result, and includes the code you used (or a link to it), including the exact commit, so that others can reproduce your result.

Imagenette Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 fastai2 train_imagenette.py 2020-10 + MaxBlurPool + tuned hyperparams 87.43% 5, mean
128 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 91.57% 5, mean
128 80 fastai2 train_imagenette.py 2020-01 93.55% 1
128 200 fastai2 train_imagenette.py 2020-01 94.24% 1
192 5 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 86.76% 5, mean
192 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 92.50% 5, mean
192 80 fastai2 train_imagenette.py 2020-01 94.50% 1
192 200 fastai2 train_imagenette.py 2020-01 95.03% 1
256 5 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 86.85% 5, mean
256 20 fastai2 train_imagenette.py 2020-01 + MaxBlurPool 93.53% 5, mean
256 80 fastai2 train_imagenette.py 2020-01 94.90% 1
256 200 fastai2 train_imagenette.py 2020-01 95.11% 1

Imagenette w/Label Noise = 5%

Size (px) Epochs URL Accuracy # Runs
128 5 baseline 83.44% 1
128 20 baseline 89.53% 1
128 80 baseline 89.30% 1
128 200 baseline 90.04% 1
192 5 baseline 84.13% 1
192 20 baseline 90.65% 1
192 80 baseline 91.01% 1
192 200 baseline 91.08% 1
256 5 SESEMI 88.87% ± 0.67 5,mean±std
256 20 baseline 91.39% 1
256 80 SESEMI 92.95% ± 0.12 3,mean±std
256 200 SESEMI 93.96% ± 0.23 3,mean±std

Imagenette w/Label Noise = 50%

Size (px) Epochs URL Accuracy # Runs
128 5 baseline 66.60% 1
128 20 baseline 79.36% 1
128 80 baseline 50.80% 1
128 200 baseline 52.18% 1
192 5 baseline 67.54% 1
192 20 baseline 79.34% 1
192 80 baseline 52.51% 1
192 200 baseline 53.71% 1
256 5 SESEMI 76.72% ± 0.83 5,mean±std
256 20 baseline 79.21% 1
256 80 SESEMI 57.76% ± 0.39 3,mean±std
256 200 SESEMI 61.48% ± 0.33 3,mean±std

Imagewoof Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 depthwise(x6) 76.61% 5, mean
128 20 depthwise(x4) 86.27% 5, mean
128 80 depthwise(x4) 87.83% 1
128 200 fastai2 train_imagenette.py 2020-01 87.20% 1
192 5 depthwise(x4) 81.15% 5, mean
192 20 depthwise(x4) 88.37% 5, mean
192 80 depthwise(x2) 90.30% 1
192 200 fastai2 train_imagenette.py 2020-01 89.54% 1
256 5 Resnet Trick + Mish + Sa + MaxBlurPool 78,84% 5, mean
256 20 Resnet Trick + Mish + Sa + MaxBlurPool 88,58% 5, mean
256 80 fastai2 train_imagenette.py 2020-01 90.48% 1
256 200 fastai2 train_imagenette.py 2020-01 90.38% 1

Image网 Leaderboard

Size (px) Epochs URL Accuracy # Runs
128 5 SwAV 72.94% 5,mean
128 20 SwAV 72.18% 3,mean
128 80 SwAV 69.53% 1
128 200 SwAV 66.04% 1
192 5 SwAV 77.07% 5,mean
192 20 SwAV 77.81% 3,mean
192 80 SwAV 74.9% 1
192 200 SwAV 71.77% 1
256 5 SwAV 79.56% 5,mean
256 20 SwAV 79.2% 3,mean
256 80 SESEMI 78.41% ± 0.39 5,mean±std
256 200 SESEMI 79.27% ± 0.20 3,mean±std
Owner
fast.ai
fast.ai
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
[CVPR2021] De-rendering the World's Revolutionary Artefacts

De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,

49 Nov 06, 2022
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023