Baseline inference Algorithm for the STOIC2021 challenge.

Overview

STOIC2021 Baseline Algorithm

This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it implements a simple evaluation pipeline for an I3D model that was trained on the STOIC2021 training data. You can use this repo as a template for your submission to the Qualification phase of the STOIC2021 challenge.

If something does not work for you, please do not hesitate to contact us or add a post in the forum. If the problem is related to the code of this repository, please create a new issue on GitHub.

Table of Contents

Before implementing your own algorithm with this template, we recommend to first upload a grand-challenge.org Algorithm based on the unaltered template by following these steps:

Afterwards, you can easily implement your own algorithm, by altering this template and updating the Algorithm you created on grand-challenge.org.

Prerequisites

We recommend using this repository on Linux. If you are using Windows, we recommend installing Windows Subsystem for Linux (WSL). Please watch the official tutorial by Microsoft for installing WSL 2 with GPU support.

  • Have Docker installed.
  • Have an account on grand-challenge.org and make sure that you are a verified user there.

Building, testing, and exporting your container

Building

To test if your system is set up correctly, you can run ./build.sh (Linux) or ./build.bat (Windows), that simply implement this command:

docker build -t stoicalgorithm .

Please note that the next step (testing the container) also runs a build, so this step is not necessary if you are certain that everything is set up correctly.

Testing

To test if the docker container works as expected, test.sh/test.bat will build the container and run it on images provided in the ./test/ folder. It will then check the results (.json files produced by your algorithm) against the .json files in ./test/.

If the tests run successfully, you will see Tests successfully passed....

Note: If you do not have a GPU available on your system, remove the --gpus all flag in test.sh/test.bat to run the test. Note: When you implemented your own algorithm using this template, please update the the .json files in ./test/ according to the output of your algorithm before running test.sh/test.bat.

Exporting

Run export.sh/export.bat to save the docker image to ./STOICAlgorithm.tar.gz. This script runs build.sh/build.bat as well as the following command: docker save stoicalgorithm | gzip -c > STOICAlgorithm.tar.gz

Creating an Algorithm on grand-challenge.org

After building, testing, and exporting your container, you are ready to create an Algorithm on grand-challenge.org. Note that there is no need to alter the algorithm implemented in this baseline repository to start this step. Once you have created an Algorithm on grand-challenge.org, you can later upload new docker containers to that same Algorithm as many times as you wish.

You can create an Algorithm by following this link. Some important fields are:

  • Please choose a Title and Description for your algorithm;
  • Enter CT at Modalities and Lung (Thorax) at Structures;
  • Select a logo to represent your algorithm (preferably square image);
  • For the interfaces of the algorithm, please select CT Image as Inputs, and as Outputs select both Probability COVID-19 and Probability Severe COVID-19;
  • Choose Viewer CIRRUS Core (Public) as a Workstation;
  • At the bottom of the page, indicate that you would like your Docker image to use GPU and how much memory it needs. After filling in the form, click the "Save" button at the bottom of the page to create your Algorithm.

Uploading your container to your Algorithm

Uploading manually

You have now built, tested, and exported your container and created an Algorithm on grand-challenge.org. To upload your container to your Algorithm, go to "Containers" on the page for your Algorithm on grand-challenge.org. Click on "upload a Container" button, and upload your .tar.gz file. You can later update your container by uploading a new .tar.gz file.

Linking a GitHub repo

Instead of uploading the .tar.gz file directly, you can also link your GitHub repo. Once your repo is linked, grand-challenge.org will automatically build the docker image for you, and add the updated container to your Algorithm.

  • First, click "Link Github Repo". You will then see a dropdown box, where your Github repo is listed only if it has the Grand-Challenge app already installed. Usually this is not the case to begin with, so you should click on "link a new Github Repo". This will guide you through the installation of the Grand-challenge app in your repository.
  • After the installation of the app in your repository is complete you should be automatically returned to the Grand Challenge page, where you will find your repository now in the dropdown list (In the case you are not automatically returned to the same page you can find your algorithm and click "Link Github Repo" again). Select your repository from the dropdown list and click "Save".
  • Finally, you need to tag your repository, this will trigger Grand-Challenge to start building the docker container.

Make sure your container is Active

Please note that it can take a while until the container becomes active (The status will change from "Ready: False" to "Active") after uploading it, or after linking your Github repo. Check back later or refresh the URL after some time.

Submitting to the STOIC2021 Qualification phase

With your Algorithm online, you are ready to submit to the STOIC2021 Qualification Leaderboard. On https://stoic2021.grand-challenge.org/, navigate to the "Submit" tab. Navigate to the "Qualification" tab, and select your Algorithm from the drop down list. You can optionally leave a comment with your submission.

Note that, depending on the availability of compute nodes on grand-challenge.org, it may take some time before the evaluation of your Algorithm finishes and its results can be found on the Leaderboard.

Implementing your own algorithm

You can implement your own solution by editing the predict function in ./process.py. Any additional imported packages should be added to ./requirements.txt, and any additional files and folders you add should be explicitly copied in the ./Dockerfile. See ./requirements.txt and ./Dockerfile for examples. To update your algorithm, you can simply test and export your new Docker container, after which you can upload it to your Algorithm. Once your new container is Active, you can resubmit your Algorithm.

Please note that your container will not have access to the internet when executing on grand-challenge.org, so all model weights must be present in your container image. You can test this locally using the --network=none option of docker run.

Good luck with the STOIC2021 COVID-19 AI Challenge!

Tip: Running your algorithm on a test folder:

Once you validated that the algorithm works as expected in the Testing step, you might want to simply run the algorithm on the test folder and check the output .json files for yourself. If you are on a native Linux system you will need to create a results folder that the docker container can write to as follows (WSL users can skip this step).

mkdir ./results
chmod 777 ./results

To write the output of the algorithm to the results folder use the following command:

docker run --rm --memory=11g -v ./test:/input/ -v ./results:/output/ STOICAlgorithm
Owner
Luuk Boulogne
Luuk Boulogne
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022