Baseline inference Algorithm for the STOIC2021 challenge.

Overview

STOIC2021 Baseline Algorithm

This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it implements a simple evaluation pipeline for an I3D model that was trained on the STOIC2021 training data. You can use this repo as a template for your submission to the Qualification phase of the STOIC2021 challenge.

If something does not work for you, please do not hesitate to contact us or add a post in the forum. If the problem is related to the code of this repository, please create a new issue on GitHub.

Table of Contents

Before implementing your own algorithm with this template, we recommend to first upload a grand-challenge.org Algorithm based on the unaltered template by following these steps:

Afterwards, you can easily implement your own algorithm, by altering this template and updating the Algorithm you created on grand-challenge.org.

Prerequisites

We recommend using this repository on Linux. If you are using Windows, we recommend installing Windows Subsystem for Linux (WSL). Please watch the official tutorial by Microsoft for installing WSL 2 with GPU support.

  • Have Docker installed.
  • Have an account on grand-challenge.org and make sure that you are a verified user there.

Building, testing, and exporting your container

Building

To test if your system is set up correctly, you can run ./build.sh (Linux) or ./build.bat (Windows), that simply implement this command:

docker build -t stoicalgorithm .

Please note that the next step (testing the container) also runs a build, so this step is not necessary if you are certain that everything is set up correctly.

Testing

To test if the docker container works as expected, test.sh/test.bat will build the container and run it on images provided in the ./test/ folder. It will then check the results (.json files produced by your algorithm) against the .json files in ./test/.

If the tests run successfully, you will see Tests successfully passed....

Note: If you do not have a GPU available on your system, remove the --gpus all flag in test.sh/test.bat to run the test. Note: When you implemented your own algorithm using this template, please update the the .json files in ./test/ according to the output of your algorithm before running test.sh/test.bat.

Exporting

Run export.sh/export.bat to save the docker image to ./STOICAlgorithm.tar.gz. This script runs build.sh/build.bat as well as the following command: docker save stoicalgorithm | gzip -c > STOICAlgorithm.tar.gz

Creating an Algorithm on grand-challenge.org

After building, testing, and exporting your container, you are ready to create an Algorithm on grand-challenge.org. Note that there is no need to alter the algorithm implemented in this baseline repository to start this step. Once you have created an Algorithm on grand-challenge.org, you can later upload new docker containers to that same Algorithm as many times as you wish.

You can create an Algorithm by following this link. Some important fields are:

  • Please choose a Title and Description for your algorithm;
  • Enter CT at Modalities and Lung (Thorax) at Structures;
  • Select a logo to represent your algorithm (preferably square image);
  • For the interfaces of the algorithm, please select CT Image as Inputs, and as Outputs select both Probability COVID-19 and Probability Severe COVID-19;
  • Choose Viewer CIRRUS Core (Public) as a Workstation;
  • At the bottom of the page, indicate that you would like your Docker image to use GPU and how much memory it needs. After filling in the form, click the "Save" button at the bottom of the page to create your Algorithm.

Uploading your container to your Algorithm

Uploading manually

You have now built, tested, and exported your container and created an Algorithm on grand-challenge.org. To upload your container to your Algorithm, go to "Containers" on the page for your Algorithm on grand-challenge.org. Click on "upload a Container" button, and upload your .tar.gz file. You can later update your container by uploading a new .tar.gz file.

Linking a GitHub repo

Instead of uploading the .tar.gz file directly, you can also link your GitHub repo. Once your repo is linked, grand-challenge.org will automatically build the docker image for you, and add the updated container to your Algorithm.

  • First, click "Link Github Repo". You will then see a dropdown box, where your Github repo is listed only if it has the Grand-Challenge app already installed. Usually this is not the case to begin with, so you should click on "link a new Github Repo". This will guide you through the installation of the Grand-challenge app in your repository.
  • After the installation of the app in your repository is complete you should be automatically returned to the Grand Challenge page, where you will find your repository now in the dropdown list (In the case you are not automatically returned to the same page you can find your algorithm and click "Link Github Repo" again). Select your repository from the dropdown list and click "Save".
  • Finally, you need to tag your repository, this will trigger Grand-Challenge to start building the docker container.

Make sure your container is Active

Please note that it can take a while until the container becomes active (The status will change from "Ready: False" to "Active") after uploading it, or after linking your Github repo. Check back later or refresh the URL after some time.

Submitting to the STOIC2021 Qualification phase

With your Algorithm online, you are ready to submit to the STOIC2021 Qualification Leaderboard. On https://stoic2021.grand-challenge.org/, navigate to the "Submit" tab. Navigate to the "Qualification" tab, and select your Algorithm from the drop down list. You can optionally leave a comment with your submission.

Note that, depending on the availability of compute nodes on grand-challenge.org, it may take some time before the evaluation of your Algorithm finishes and its results can be found on the Leaderboard.

Implementing your own algorithm

You can implement your own solution by editing the predict function in ./process.py. Any additional imported packages should be added to ./requirements.txt, and any additional files and folders you add should be explicitly copied in the ./Dockerfile. See ./requirements.txt and ./Dockerfile for examples. To update your algorithm, you can simply test and export your new Docker container, after which you can upload it to your Algorithm. Once your new container is Active, you can resubmit your Algorithm.

Please note that your container will not have access to the internet when executing on grand-challenge.org, so all model weights must be present in your container image. You can test this locally using the --network=none option of docker run.

Good luck with the STOIC2021 COVID-19 AI Challenge!

Tip: Running your algorithm on a test folder:

Once you validated that the algorithm works as expected in the Testing step, you might want to simply run the algorithm on the test folder and check the output .json files for yourself. If you are on a native Linux system you will need to create a results folder that the docker container can write to as follows (WSL users can skip this step).

mkdir ./results
chmod 777 ./results

To write the output of the algorithm to the results folder use the following command:

docker run --rm --memory=11g -v ./test:/input/ -v ./results:/output/ STOICAlgorithm
Owner
Luuk Boulogne
Luuk Boulogne
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
wgan, wgan2(improved, gp), infogan, and dcgan implementation in lasagne, keras, pytorch

Generative Adversarial Notebooks Collection of my Generative Adversarial Network implementations Most codes are for python3, most notebooks works on C

tjwei 1.5k Dec 16, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
BBB streaming without Xorg and Pulseaudio and Chromium and other nonsense (heavily WIP)

BBB Streamer NG? Makes a conference like this... ...streamable like this! I also recorded a small video showing the basic features: https://www.youtub

Lukas Schauer 60 Oct 21, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
šŸ•µ Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022