Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

Overview

When2com: Multi-Agent Perception via Communication Graph Grouping

License: MIT

This is the PyTorch implementation of our paper:
When2com: Multi-Agent Perception via Communication Graph Grouping
Yen-Cheng Liu, Junjiao Tian, Nathaniel Glaser, Zsolt Kira
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020

[Paper] [GitHub] [Project]

Prerequisites

  • Python 3.6
  • Pytorch 0.4.1
  • Other required packages in requirement.txt

Getting started

Download and install miniconda

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

Create conda environment

conda create -n semseg python=3.6
source actviate semseg

Install the required packages

pip install -r requirements.txt

Download AirSim-MAP dataset and unzip it.

  • Download the zip file you would like to run

Alt text

Move the datasets to the dataset path

mkdir dataset
mv (dataset folder name) dataset/

Training

# [Single-request multi-support] All norm  
python train.py --config configs/srms-allnorm.yml --gpu=0

# [Multi-request multi-support] when2com model  
python train.py --config configs/mrms-when2com.yml --gpu=0

Testing

# [Single-request multi-support] All norm  
python test.py --config configs/srms-allnorm.yml --model_path <your trained weights> --gpu=0

# [Multi-request multi-support] when2com model  
python test.py --config configs/mrms-when2com.yml --model_path <your trained weights> --gpu=0

Acknowledgments

  • This work was supported by ONR grant N00014-18-1-2829.
  • This code is built upon the implementation from Pytorch-semseg.

Citation

If you find this repository useful, please cite our paper:

@inproceedings{liu2020when2com,
    title={When2com: Multi-Agent Perception via Communication Graph Grouping},
    author={Yen-Cheng Liu and Junjiao Tian and Nathaniel Glaser and Zsolt Kira},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2020}
}
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Fernando Pérez-García 1.6k Jan 06, 2023
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022